
75. ročník MO (2025/2026) II. kolo kategorie A

1. Řekneme, že trojice reálných čísel a, b, c je dobrá, pokud platí

1
a
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c
= 0 a a+ b+ c = 1.

a) Najděte příklad dobré trojice.
b) Určete všechny možné hodnoty výrazu
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c
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a
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b
,

kde trojice a, b, c je dobrá. (Jaromír Šimša)

Řešení. a) Vyhovuje například trojice (a, b, c) = (−1/3, 2/3, 2/3), protože
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= −3

1 + 3
2 + 3

2 = 0 a a+ b+ c = −1
3 + 2

3 + 2
3 = 1.

Poznámka. Analýzou podmínek ze zadání lze ukázat, že existuje nekonečně mnoho
dobrých trojic. Trojice (a, b, c) je dobrá, právě když bod o těchto souřadnicích leží na
kružnici, která je průnikem kulové plochy a2 + b2 + c2 = 1 a roviny a+ b+ c = 1.

Komentář. Přestože je podané řešení části a) úplné, vysvětlíme, jak příklad dobré
trojice najít. Z první rovnice dostáváme, že dobrá trojice tvaru (a, a, a) zřejmě neexistuje.
Hledejme proto dobrou trojici ve tvaru (a, b, b). Potom první zadaná rovnost má tvar
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takže je splněna právě tehdy, když −2a = b = c ”= 0. Druhá zadaná rovnost má tvar

1 = a+ b+ c = a+ (−2a) + (−2a) = −3a,

takže platí pro a = −1/3, čemuž odpovídá b = c = 2/3. Příkladem dobré trojice je proto
(a, b, c) = (−1/3, 2/3, 2/3).

b) Úpravou první rovnosti dostaneme
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= ab+ bc+ ca

abc
,

odtud plyne ab+ bc+ ca = 0. Zlomky ze zadaného výrazu pak upravíme takto

ab

c
= −bc− ca

c
= −b− a,

bc

a
= −ca− ab

a
= −c− b,

ca

b
= −ab− bc

b
= −a− c.

Jejich sečtením a užitím rovnosti a+ b+ c = 1 získáme

ab

c
+ bc

a
+ ca

b
= (−b− a) + (−c− b) + (−a− c) = −2(a+ b+ c) = −2.

Číslo −2 je tak jediná možná hodnota zadaného výrazu. Tuto hodnotu dostaneme
například volbou dobré trojice (a, b, c) = (−1/3, 2/3, 2/3) z části a).
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Jiné řešení. Ukážeme jiný způsob, jak řešit část b). Stejně jako v prvním řešení
odvodíme rovnost ab+ bc+ ca = 0. Umocněním této rovnosti dostaneme

0 = (ab+ bc+ ca)2 = a2b2 + b2c2 + c2a2 + 2a2bc+ 2ab2c+ 2abc2,

takže platí

a2b2 + b2c2 + c2a2 = −2a2bc− 2ab2c− 2abc2 = −2abc(a+ b+ c).

Upravíme zadaný výraz

ab

c
+ bc

a
+ ca

b
= a2b2 + b2c2 + c2a2

abc
= −2abc(a+ b+ c)

abc
= −2(a+ b+ c) = −2.

Poznámka. Existuje více způsobů, jak řešit část b). Například je možné vyhnout se
odvození rovnosti ab+ bc+ ca = 0, a to úpravou zadaného vztahu

1
a
+ 1

b
+ 1

c
= a+ b

ab
+ 1

c
= 0,

takže po vynásobení ab dostaneme

ab

c
= −a− b.

Podobně upravíme i ostatní členy a řešení dokončíme jako ve výše uvedeném řešení.

V řešeních části a) udělte body následovně:
A1. Uvedení správné trojice (i bez ověření podmínek): 2 body.
A2. Správný myšlenkový postup, který však vede k nesprávnému výsledku z důvodu numerické chyby:

1 bod.
Celkově za část a) dejte max(A1,A2) bodů.
V řešeních části b) udělte body následovně:

B1. Úplné řešení: 4 body.
B2. Odvození ab+ bc+ ca = 0 z 1

a + 1
b + 1

c = 0: 1 bod.
B3. Odvození alespoň jedné rovnosti tvaru ab

c = −a− b: 2 body.
B4. Uvedení odpovědi −2 bez zdůvodnění: 1 bod.

Celkově za část b) udělte max(B1,B2,B3,B4) bodů.
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2. Kladné celé číslo nazveme mozaikové, pokud má mezi čísly 1, 2, 3, 4, 5, 6 alespoň
čtyři dělitele. Rozhodněte, zda lze z libovolných tří mozaikových čísel vybrat dvě, jejichž
součet je mozaikový. (Dominik Martin Rigász)

Řešení. Nechť n je libovolné mozaikové číslo. Je jistě dělitelné číslem 1. Aby mělo
alespoň čtyři dělitele v množině M = {1, 2, 3, 4, 5, 6}, má v ní alespoň tři další dělitele.

Pokud by n nebylo dělitelné číslem 2, pak nemůže být dělitelné ani čísly 4 a 6. V tomto
případě by jeho jedinými možnými děliteli z množiny M byla čísla 1, 3, 5. To jsou však
jen tři dělitele z množiny M , což je ve sporu s definicí mozaikového čísla, které je musí
mít alespoň čtyři. Každé mozaikové číslo musí být proto dělitelné čísly 1 a 2.

Kromě 1 a 2 musí mít n ještě alespoň dva jiné dělitele z množiny M . Uvážíme dva
případy:
• Nechť 3 je dělitelem n. Jelikož i 2 je dělitelem n, tak i 6 je dělitelem n. Odtud plyne,
že n má v množině M alespoň čtyři dělitele, a to 1, 2, 3, 6.

• Nechť 3 není dělitelem n. Pak ani 6 není dělitelem n. Zbývající možné dělitele
z množiny M jsou 4, 5. Aby mělo n alespoň čtyři dělitele v množině M , je dělitelné
oběma čísly. V tomto případě má n v množině M právě 4 dělitele, a to 1, 2, 4, 5.
To znamená, že každé mozaikové číslo je dělitelné čtveřicí 1, 2, 3, 6 nebo čtveřicí 1,

2, 4, 5.
Máme-li tři libovolná mozaiková čísla, pak najdeme alespoň dvě, která obě sdílejí

dělitele 1, 2, 3, 6 nebo najdeme alespoň dvě, která obě sdílejí dělitele 1, 2, 4, 5 (používáme
zde Dirichletův princip).

Uvažujme součet takových dvou mozaikových čísel. Protože obě čísla jsou dělitelná
každým číslem z příslušné čtveřice (1, 2, 3, 6 nebo 1, 2, 4, 5), jejich součet musí být
rovněž dělitelný každým číslem z této čtveřice. To znamená, že součet této dvojice má
jistě alespoň čtyři dělitele z množiny M , a proto je podle zadání mozaikový.

Jiné řešení. Ukážeme, že každé kladné celé číslo je mozaikové právě tehdy, když je
dělitelné číslem 6 nebo číslem 20.

Pokud 6 | n, pak je číslo n dělitelné čísly 1, 2, 3 i 6. Pokud 20 | n, pak je n dělitelné
čísly 1, 2, 4 a 5. Tedy v obou případech je číslo n mozaikové.

Naopak, ať je n mozaikové. Pokud 6 - n, pak alespoň jedno z čísel 2, 3 nedělí n.
Pokud 2 - n, tak ani 4 - n. Zůstávají možné dělitele 1, 3, 5, 6, ale jelikož 6 - n, číslo n nemá
čtyři různé dělitele mezi čísly 1, . . . , 6, což je ve sporu s tím, že je mozaikové. Tedy 2 | n.
Jelikož 6 - n, musí platit 3 - n. A jelikož 6 - n a 3 - n, aby mělo n alespoň čtyři dělitele
mezi 1, . . . , 6, musí ho dělit čísla 1, 2, 4, 5, takže 20 | n.

To znamená, že mezi třemi mozaikovými čísly budou alespoň dvě čísla násobky 6
(pak je i jejich součet násobkem 6) nebo budou alespoň dvě čísla násobky 20 (pak je i
jejich součet násobkem 20). V obou případech je součet mozaikový.

Za úplné řešení udělte 6 bodů. V neúplných řešeních oceňte částečné kroky z výše popsaných postupů
následovně:
A1. Pozorování, že každé mozaikové číslo musí být dělitelné číslem 2: 1 bod
A2. Důkaz, že mozaikové číslo musí mít dělitele 1, 2, 3, 6 (tj. je dělitelné 6) nebo dělitele 1, 2, 4, 5 (tj.

je dělitelné 20): 4 body
B1. Dokončení řešení za předpokladu A2: 2 body

Celkově za neúplná řešení udělte max(A1,A2) + B1 bodů.
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3. V tětivovém čtyřúhelníku ABCD označme P průsečík úhlopříček. Dále označme H

průsečík výšek trojúhelníku APB. Předpokládejme, že platí |AP |+ |PB| = |AD| +
+ |BC|. Dokažte, že |HC| = |HD|. (Josef Tkadlec, Michal Janík)

Řešení. Ukážeme, že platí |AP | = |AD| a |BP | = |BC|. Jelikož čtyřúhelník ABCD

je tětivový, pro obvodové úhly příslušné oblouku AB platí |ADB| = |ACB|. Dále
platí |APD| = |BPC|. Odtud dostáváme, že trojúhelníky APD a BPC jsou podobné
podle věty uu. Existuje tak konstanta k > 0, že |PB| = k · |AP | a |BC| = k · |AD|.
Z předpokladu máme

|AP |+ |PB| = |AD|+ |BC|,
|AP |+ k · |AP | = |AD|+ k · |AD|,
(1 + k) · |AP | = (1 + k) · |AD|,

|AP | = |AD|.
A jelikož |AP | = |AD|, tak z rovnosti |AP | + |PB| = |AD| + |BC| dostáváme, že platí
i |PB| = |BC|. Takže trojúhelníky APD a BPC jsou rovnoramenné se základnami po
řadě PD a PC.

Trojúhelník APD je rovnoramenný, proto osa základny PD splývá s výškou ke straně
PB v trojúhelníku ABP . Tedy bod H leží na ose úsečky PD, a platí tak |HD| = |HP |.
Analogicky dostaneme, že platí |HC| = |HP |, tedy platí |HC| = |HP | = |HD|, jak jsme
chtěli ukázat.

A B

C

D

P

H

k · |AP |

k
· |
A
D
|

Poznámka. Lze ukázat, že H je středem oblouku CD neobsahujícího A, B kružnice
opsané čtyřúhelníku ABCD, tedy tzv. „Švrčkovým bodem“ trojúhelníků DAC a DBC

vzhledem k A a B. Plyne to z faktu, že H leží na osách úhlů DAC a DBC. Jelikož H je
středem zmíněného oblouku CD, platí |HC| = |HD|.
Za úplné řešení udělte 6 bodů. V neúplných řešeních oceňte částečné kroky z výše popsaných postupů
následovně:
A1. Uvedení, že trojúhelníky APD a BPC jsou podobné: 1 bod
A2. Důkaz, že alespoň jeden z trojúhelníků APD a BPC je rovnoramenný: 3 body
B1. Důkaz rovnosti |HC| = |HP | nebo |HD| = |HP | za předpokladu rovnoramennosti trojúhelníků

APD a BPC: 2 body
B2. Důkaz, že H je středem oblouku CD kružnice opsané čtyřúhelníku ABCD neobsahujícího A, B, za

předpokladu rovnoramennosti trojúhelníků APD a BPC: 2 body
Celkově za neúplná řešení udělte max(A1,A2) + max(B1,B2) bodů.
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