
75. ročník Matematické olympiády (2025/2026)

Úlohy domácího kola kategorie B
1. Každé hraně čtyřstěnu přiřadíme jedno reálné číslo tak, aby každá stěna měla stejný

součet čísel svých tří hran. Kolik nejvýše z šesti čísel přiřazených hranám může být
navzájem různých? (Mária Dományová)

Řešení. Označme čísla na jednotlivých hranách x, y, z, a, b,

a

c

b

xy

z

c jako na obrázku a S společný součet na stěnách. Podle zadání
řešíme následující soustavu rovnic

a+ b+ c = S,

a+ y + z = S,

b+ z + x = S,

c+ x+ y = S.

Sečtením prvních dvou a odečtením posledních dvou rovnic dostaneme a = x, podobně
dokážeme b = y a c = z. Všech šest čísel tedy nabývá dohromady nejvýše tří různých
hodnot. Volba (a, b, c, x, y, z) = (1, 2, 3, 1, 2, 3) ukazuje, že tři z přiřazených čísel mohou
být různá.

Komentář. Uvedené operace provedené s rovnicemi nejsou jedinou možností vedoucí
k řešení. Např. z prvních dvou rovnic plyne b + c = S − a = y + z, podobně ze zbylých
dvou dostaneme b+ z = c+y a odečtením získaných rovnic obdržíme c− z = z− c neboli
c = z, podobně bychom získali zbylé dvě rovnosti.

Tyto a podobné algebraické postupy můžeme provést i bez explicitního sestavení
soustavy rovnic a manipulace s nimi. Vzorové řešení bychom mohli zformulovat například
následovně. Nejprve opět označíme společný součet trojic čísel kolem stěn S. Všimneme
si, že zvolíme-li kterékoli dvě stěny čtyřstěnu s1 a s2, mají právě jednu společnou hranu h
a dohromady sousedí se všemi hranami čtyřstěnu kromě jedné, ležící naproti h, kterou
označíme h′. Když využijeme zadanou podmínku na tyto dvě stěny, zjistíme, že součet
čísel u všech hran kromě h′ a s dvakrát započítaným číslem u h, je roven 2S. Tatáž úvaha
se zbylými dvěma stěnami dá podobnou rovnost, jen číslo u h′ bude započítáno dvakrát
a naopak vynecháno bude číslo u h. Z toho ale nutně vyplývá, že čísla u h i h′ jsou stejná,
jinak by nemohl v obou případech vyjít stejný součet 2S. Podobně dostaneme stejný
vztah pro zbylé dvě dvojice protějších hran.

Návodné a doplňující úlohy:
N1. Uvažme čtyři čísla taková, že každá tři mají stejný součet. Ukažte, že pak musí být všechna

stejná. [Označme čísla x1, x2, x3, x4 a jejich součet S. Pak platí S − x1 = x2 + x3 + x4 =
= x1 + x2 + x3 = S − x4, porovnáním krajních výrazů dostaneme x1 = x4, podobně
pro ostatní dvojice. Součet S není třeba zavádět, jelikož z x1 + x2 + x3 = x2 + x3 + x4
dostáváme ihned x1 = x4 a analogicky pro zbylé dvojice. Zde se jedná jen o kosmetický
rozdíl, ale v některých obtížnějších úlohách může označení vhodného symetrického výrazu
vnést do řešení systém a ukázat správnou cestu k cíli.]
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N2. Pět čísel je napsaných po obvodu kruhu tak, že každá tři sousední mají stejný součet.
Ukažte, že pak musí být všechna stejná. [Označme čísla x1 až x5, společnou hodnotu
součtů sousedních trojic T a součet všech pěti čísel S. Pak platí

2T = (x1 + x2 + x3) + (x4 + x5 + x1) = S + x1,

2T = (x2 + x3 + x4) + (x5 + x1 + x2) = S + x2

a podobně (posunem začátku sčítání kolem kruhu) pro ostatní tři čísla. Porovnáním
snadno dostaneme požadovanou rovnost.]

N3. Šest čísel je napsaných po obvodu kruhu tak, že každá tři sousední mají stejný součet.
Kolik nejvýše z nich může být různých? [Tři. Opět označíme čísla x1 až x6 v pořadí okolo
kruhu. Pak x1 + x2 + x3 = x2 + x3 + x4, z čehož plyne x1 = x4 a analogicky dostaneme
rovnosti x2 = x5 a x3 = x6. Dalšími kombinacemi zadaných podmínek/rovnic už více
informací nedostaneme, např. šestice (1, 2, 3, 1, 2, 3) splňuje zadané podmínky, tedy tři
různá čísla mohou být. (Dokonce vyhovuje každá šestice tvaru (a, b, c, a, b, c)).]

D1. Každé stěně krychle přiřadíme reálné číslo tak, aby všechny vrcholy krychle měly stejný
součet čísel na třech přilehlých stěnách. Kolik ze šesti čísel přiřazených stěnám může
být navzájem různých? [Jedno, dvě nebo tři. Pohledem na dva sousední vrcholy krychle
dostaneme, že na protějších stěnách krychle musí být stejná čísla. Naopak, pokud na
horní a dolní stěně bude číslo a, na levé a pravé b a na přední a zadní c, pak u každého
vrcholu bude součet a+ b+ c. Z čísel a, b, c tedy mohou být právě jedno až tři navzájem
různá.]

D2. Pro reálná čísla a, b, c, d platí

a+ b+ c+ d = 0 a 1
a

+ 1
b

+ 1
c

+ 1
d

= 0.

Kolik z rovností ab = cd, ac = bd, ad = bc může současně platit? Určete všechny takové
počty. [A–74–IV–1]
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2. Zápis přirozeného čísla v desítkové soustavě končí dvojčíslím 90. Dokažte, že součin
všech jeho kladných dělitelů je druhou mocninou přirozeného čísla. (Ján Mazák)

Řešení. V tomto řešení budeme slovem dělitel mínit kladný dělitel. Nejprve ukážeme,
že počet dělitelů čísla n je násobek čtyř. Jelikož číslo n končí dvojčíslím 90, platí
n = 4 · 25k+ 90. Je tak dělitelné 2, ale už ne 22 = 4 (připomeňte si kritérium dělitelnosti
čtyřmi). Podobně je n dělitelné 5, ale už ne 52 = 25. Libovolný dělitel n lze zapsat
jako d = 2a · 5b · z, kde a, b ∈ {0, 1} a z je libovolný dělitel n nesoudělný s 2 a 5.
Zafixováním dvojice hodnot a a b (celkem čtyři možnosti) a dosazením všech možných
hodnot z rozdělíme všechny dělitele n na čtyři stejně velké skupiny, jejich počet je tedy
dělitelný čtyřmi. Např. pro n = 90 = 2 · 5 · 32 máme z ∈ {1, 3, 9} a výše popsané skupiny
vypadají takto:
• (a = 0, b = 0) {1, 3, 9},
• (a = 0, b = 1) {5 · 1, 5 · 3, 5 · 9} = {5, 15, 45},
• (a = 1, b = 0) {2 · 1, 2 · 3, 2 · 9} = {2, 6, 18},
• (a = 1, b = 1) {(5 · 2) · 1, (5 · 2) · 3, (5 · 2) · 9} = {10, 30, 90}.

Nyní vyjádříme součin všech dělitelů čísla n. Protože n není druhou mocninou (jinak
by muselo být dělitelné 22 a 52), je možné jeho dělitele rozdělit na dvojice se součinem n:
(1, n), (2, n/2) atd., obecně (d, n/d) pro všechny jeho dělitele d <

√
n. Když toto párování

provedeme v zápisu součinu všech dělitelů n a nahradíme každou dvojici jejím součinem n,
zjistíme, že součin všech dělitelů n je n umocněno na polovinu počtu svých dělitelů.
Ilustrujme toto obecné zjištění na čísle 18. Jeho šest kladných dělitelů výše uvedeným
postupem rozdělíme do tří dvojic 18 = 1 · 18 = 2 · 9 = 3 · 6. Jejich součin je roven
1 · 2 · 3 · 6 · 9 · 18 = (1 · 18) · (2 · 9) · (3 · 6) = 183.

Pro n ze zadání jsme výše dokázali, že počet jeho dělitelů je násobek čtyř – zapišme
jej tedy jako 4k pro vhodné přirozené číslo k. Součin dělitelů n je pak roven n2k = (nk)2,
což je druhou mocninou přirozeného čísla.

Návodné a doplňující úlohy:
N1. Která z čísel 210 ·74 ·9, 33 ·116, 253, 64 ·75 jsou druhými (nebo většími) mocninami celých

čísel? [Přirozené číslo je k-tou mocninou, právě když všechny exponenty prvočísel v jeho
prvočíselném rozkladu jsou násobky k. Konkrétně: 210 · 74 · 9 = 210 · 74 · 32 = (25 · 72 · 3)2

je druhá, ale žádná větší mocnina, 33 · 116 je (pouze) třetí mocninou, 253 = 56 je šestou
(a tedy i druhou a třetí) mocninou a 32 ·125 = 25 ·53 není druhou nebo větší celočíselnou
mocninou.]

N2. Určete počet kladných dělitelů čísla 90. [Číslo 90 rozložíme na prvočinitele 90 = 2 · 32 · 5.
Výběrem těchto prvočísel se stejnými nebo nižšími (i nulovými) exponenty poskládáme
všechny kladné dělitele 1, 2, 3, 5, 6, 9, 10, 15, 18, 30, 45, 90. Je jich tedy 12.]

N3. Ukažte, že pokud je n čtvrtou mocninou přirozeného čísla, pak součin kladných dělitelů
čísla n je druhou mocninou přirozeného čísla. [Označme τ počet kladných dělitelů n.
Rozdělením těchto dělitelů do dvojic (d, n/d) se součinem n = a4 stejně jako v řešení
soutěžní úlohy se jediný z nich páruje sám se sebou, a to

√
n = a2. Celkový součin je tedy

roven
a2 · (a4)

τ−1
2 = (a2)τ = (aτ )2,

což je druhou mocninou.]
D1. Zobecněte úlohu N2 – dokažte, že počet kladných dělitelů čísla s prvočíselným rozkladem

n = pα1
1 · . . . · pαmm je roven (α1 + 1) . . . (αm + 1). [Prvočíselný rozklad libovolného

dělitele n obsahuje stejná prvočísla jako n se stejnými nebo nižšími (případně nulovými,
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připomeňme konvenci l0 = 1 pro každé l 6= 0) exponenty než mají příslušná prvočísla
v rozkladu n. Určení těchto mocnin jednoznačně určuje dělitele a různé volby mocnin
dávají různé dělitele. Jelikož u prvočísla pi máme na výběr exponenty 0, 1, . . . , αi (tedy
αi + 1 možností) a exponenty u různých prvočísel můžeme volit nezávisle (tzn. máme
k dispozici všechny kombinace), je počet dělitelů skutečně roven uvedenému součinu.]

D2. Součin všech kladných dělitelů čísla 15 je 152. Která další čísla mají tu vlastnost, že součin
všech jejich kladných dělitelů je druhou mocninou uvažovaného čísla? [Vyhovují čísla 1,
pq a p3 pro p, q libovolná různá prvočísla. Uvažme libovolné přirozené číslo n, které má
v prvočíselném rozkladu alespoň tři prvočísla p1, p2 a p3 v (kladných) mocninách α1, α2
a α3, tedy n = pα1

1 pα2
2 pα3

3 m, pro nějaké přirozené číslo m. Pak p1 dělí n2 v mocnině 2α1.
V součinu všech kladných dělitelů n se vyskytuje s exponentem alespoň

(α2 + 1)(α3 + 1)α1 = 4α1 > 2α1,

protože všechna čísla tvaru pα1
1 d, kde d je kladný dělitel pα2

2 pα3
3 , jsou kladnými děliteli n

a z úlohy D1 víme, že takových dělitelů d je (α2 + 1)(α3 + 1). Taková n tedy podmínce
nevyhovují. Analogicky rozebereme případy, kdy n je dělitelné právě dvěma prvočísly
(vyjde, že obě musí být v rozkladu n v prvních mocninách, stejně jako u čísla 15). Pokud
n = pα je mocninou prvočísla, jeho kladní dělitelé jsou čísla 1, p, p2, . . . , pα. Jejich součin
je roven p

α(α+1)
2 a jeho druhá mocnina je rovna p2α. Porovnáním exponentů dostáváme

α = 0 (pak n = 1) nebo α = 3 (pak n = p3).]
D3. Vyjádřete součet a součin všech kladných dělitelů čísla n = pαqβ co nejjednodušeji pomocí

prvočísel p, q a nezáporných celých čísel α, β. [Uvažme součin

(p0 + p1 + . . .+ pα)(q0 + q1 + . . .+ qβ).

Všimněme si, že pokud bychom jej roznásobili, dostali bychom právě součet všech dělitelů
n. S pomocí známého vzorce pro rozklad výrazu pro An − Bn můžeme ještě výsledek
zapsat v uzavřeném tvaru jako

(pα+1 − 1)(qβ+1 − 1)
(p− 1)(q − 1) .

Hledejme nyní výraz pro součin všech dělitelů n. S jakou mocninou se v něm vyskytuje p?
Libovolný dělitel qβ můžeme vynásobit mocninou p (s exponentem mezi nulou a α)
a získáme tak každý dělitel n. Mocnina p v součinu všech kladných dělitelů n je tedy
rovna (1 + . . . + α)krát počet dělitelů čísla qβ , tedy α(α+1)(β+1)

2 . Analogicky vyjádříme
exponent u q a celý hledaný součin jako

p
α(α+1)(β+1)

2 q
β(α+1)(β+1)

2 = n
(α+1)(β+1)

2 .

K témuž výsledku dochází jinou cestou i řešení soutěžní úlohy, i když jen pro n, která
nejsou druhou mocninou. Stojí za povšimnutí, že vzorec zůstává v platnosti i v tomto
případě.]

D4. Počet všech sudých dělitelů některého přirozeného čísla je o 3 větší než počet všech jeho
lichých dělitelů. Jaký je podíl součtu všech jeho sudých dělitelů a součtu všech jeho lichých
dělitelů? Najděte všechny možné odpovědi. [B–65–I–4]

D5. Součin všech kladných dělitelů přirozeného čísla n je 2015. Určete n. [B–64–II–1]
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3. Na tabuli je nakreslena kružnice (bez středu) a na ní tři různé body A, B, C.
Máme k dispozici křídu a trojúhelník s ryskou bez měřítka. Ten nám umožňuje jen
vést přímku libovolnými dvěma body a k dané přímce p vést kolmici daným bodem
(ne nutně ležícím na p). Popište a zdůvodněte konstrukci středu kružnice vepsané
trojúhelníku ABC. (Ema Čudaiová)

Řešení. Střed kružnice trojúhelníku vepsané leží v průsečíku os jeho vnitřních
úhlů, jejich konstrukci si nyní popíšeme. Nejprve si uvědomíme, že osa vnitřního úhlu
u vrcholu A protne kružnici opsanou v bodě, který je středem jejího oblouku BC (přesněji
toho, který neobsahuje bod A), viz návodná úloha N3. Je tomu tak díky větě o obvodových
úhlech, jejíž jedna varianta říká, že „díváme-li se z bodu ležícího na kružnici, pak úhly,
pod kterými vidíme její shodné oblouky, jsou shodné“. Podaří-li se nám tedy sestrojit
střed oblouků AB, BC, resp. CA (vždy uvažujeme ten neobsahující zbývající vrchol
trojúhelníku), přímka vedená jím a protějším vrcholem C, A, resp. B, bude příslušnou
osou vnitřního úhlu. Středy obou oblouků BC sestrojíme jako průsečíky dané kružnice
(tedy kružnice opsané trojúhelníku ABC) s osou strany BC, z nichž pak vybereme ten,
který neobsahuje bod A a analogicky pro zbylé strany (pro získání průsečíku nám stačí
jedna další osa úhlu).

Osu libovolné úsečky XY pomocí daných nástrojů sestrojíme následovně. Nejprve
bodem X vedeme kolmici k přímce XY a na ní zvolíme bod Z různý od X. Kolmice na
XZ vedená bodem Z protne kolmici k XY vedenou bodem Y v bodě W . Čtyřúhelník
XYWZ je zřejmě obdélník a průsečík jeho úhlopříček Q leží na ose úsečky XY , kterou
získáme jako kolmici na přímku XY vedenou bodem Q.

X Y

WZ

Q

Jiné řešení. Ukážeme alternativní konstrukci os vnitřních úhlů trojúhelníku ABC.
Hlavní myšlenkou následujícího postupu je najít na ramenech úhlu BAC body B′ a C ′
stejně vzdálené od vrcholu A a osu tohoto úhlu pak sestrojit jako osu úsečky B′C ′ (osu
libovolné úsečky sestrojíme jako v závěru předchozího řešení). K nalezení těchto bodů
využijeme schopnost vést daným bodem rovnoběžku s danou přímkou. Toho docílíme
dvojím opakováním konstrukce kolmice: chceme-li vést rovnoběžku s přímkou p bodem X,
vedeme nejprve bodem X kolmici k přímce p (označme ji q) a následně vedeme bodem X

kolmici na přímku q. Druhou ingrediencí bude střed kružnice O, který sestrojíme jako
průsečík os stran trojúhelníku ABC. Bod O jakožto střed kružnice opsané splňuje
|OB| = |OC|, stačilo by nám tedy tuto konfiguraci přenést k bodu A.

Bodem O veďme rovnoběžku s přímkou AB a její průsečík s kružnicí, který leží ve
stejné polorovině určené přímkou AO jako B, označme B1. Dále sestrojme rovnoběžku
bodem B1 k přímce AO a její průsečík s přímkou AB označme B′. Výběrem vhodného
průsečíku s kružnicí v prvním kroku jsme zaručili, že B′ leží na polopřímce AB. Ana-
logicky sestrojíme body C1 a C ′, viz obrázek. Všimněme si, že čtyřúhelníky AOB1B

′

5



75. ročník MO (2025/2026) domácí kolo kategorie B

A

B C

O

B′

B1

C ′

C1

a AOC1C
′ jsou rovnoběžníky a připomeňme, že protější strany rovnoběžníku jsou stejně

dlouhé. Proto platí |AB′| = |OB1| = |OC1| = |AC ′|, což nám umožňuje ke konstrukci
osy úhlu BAC použít postup ze začátku tohoto řešení.

Návodné a doplňující úlohy:
N1. Co je to kružnice trojúhelníku vepsaná? Připomeňte si, jak lze klasickými prostředky

(pravítkem a kružítkem) sestrojit její střed a proč tato konstrukce funguje. [Je to kružnice
dotýkající se všech tří stran trojúhelníka, její střed má proto od všech stejnou vzdálenost.
Množinou bodů se stejnou vzdáleností od přímek AB a AC (připomeňme, že vzdáleností
bodu X od přímky p myslíme vzdálenost bodu X od paty kolmice z X k p) je sjednocení
os vnitřního a vnějšího úhlu BAC. Průsečík os vnitřních úhlů BAC a ABC má zřejmě
stejnou vzdálenost od všech tří stran (jakožto přímek). Navíc leží uvnitř trojúhelníku,
takže musí ležet i na ose vnitřního úhlu ACB. Všechny tři osy vnitřních úhlů trojúhelníku
(jejichž konstrukce je standardní) se tedy protínají v jediném bodě, který je středem
kružnice vepsané.*]

N2. Pomocí prostředků povolených v soutěžní úloze sestrojte rovnoběžku k přímce p bodem
X, který na p neleží. [Nejprve sestrojíme kolmici q k přímce p procházející bodem X. Poté
sestrojíme kolmici k přímce q procházející bodem X, která je hledanou rovnoběžkou.]

N3. Dokažte následující tvrzení: Osa vnitřního úhlu u vrcholu A trojúhelníku ABC protne
kružnici jemu opsanou ve středu jejího oblouku BC neobsahujícího bod A. [Tvrzení plyne
přímo z věty o obvodových úhlech. K tomuto tématu doporučujeme např. studijní text
https://olympiada.karlin.mff.cuni.cz/prednasky/tkadlec.pdf.]

D1. Dokažte následující tvrzení: Osa vnějšího úhlu u vrcholu A trojúhelníku ABC protne
kružnici jemu opsanou ve středu jejího oblouku BC obsahujícího bod A. [Označme
zkoumaný průsečík X. Z úlohy N3 víme, že osa příslušného vnitřního úhlu protne kružnici
opsanou ve středu M jejího oblouku BC neobsahujícího bod A. Osa vnějšího úhlu je na
ni kolmá, z Thaletovy věty tedy plyne, že bod X tvoří s bodem M průměr kružnice,
zkoumaný průsečík X je proto středem druhého oblouku BC.]

D2. K dané kružnici sestrojte střed pouze pomocí prostředků povolených v soutěžní úloze.
[Zvolme na kružnici k libovolné dva různé body A a B. Bodem B veďme kolmici p na
přímku AB. Průsečík přímky p a kružnice k různý od bodu B označíme C. (Pokud
takový náhodou neexistuje, položíme C = B.) Konstrukci zopakujeme pro jiné dva body
A′, B′ (z nich sestrojíme C ′). Průsečík přímek AC a A′C ′ označíme S. Jelikož úhly ABC
a A′B′C ′ jsou pravé, podle Thaletovy věty jsou AC a A′C ′ průměry kružnice k a proto je
bod S hledaným středem. Další možností je sestrojit střed jako průsečík os dvou různých

* Podobně se ukáže, že průsečík os dvou vnějších úhlů leží na ose vnitřního úhlu u zbylého vrcholu. Takto
sestrojené tři body jsou středy kružnic připsaných, které se také dotýkají všech tří stran trojúhelníku (jakožto
přímek), leží však mimo trojúhelník.
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tětiv dané kružnice (konstrukce osy úsečky je popsána v řešení soutěžní úlohy). Je ovšem
třeba zajistit, aby osy tětiv nesplynuly, např. volbou dvou různých tětiv se společným
krajním bodem.]

D3. V rovině je dána kružnice k se středem S a poloměrem 1. Pouze pomocí prostředků
povolených v soutěžní úloze sestrojte úsečku o délce

√
13. [Protože 13 = 22 + 32, podle

Pythagorovy věty je
√

13 délka přepony pravoúhlého trojúhelníku s odvěsnami o délkách
2 a 3. Pro jeho konstrukci vedeme bodem S polopřímku a a polopřímku b kolmou na
a. Průsečíky polopřímek a, b s kružnicí k označíme postupně A1, B1. Bod S zobrazíme
středově souměrně (návod je uveden v závěru řešení) podle bodu A1 na bod A2 a následně
bod A1 zobrazíme podle bodu A2 na bod A3. Podobně zobrazíme bod S přes střed B1 na
bod B2. Trojúhelník B2SA3 je pravoúhlý s délkami odvěsen 2 a 3, tedy |A2A3| =

√
13.

Obraz bodu X podle bodu Y (jakožto středu souměrnosti) sestrojíme následovně: Pomocí
kolmic zkonstruujeme obdélník XY ZW . Průsečík přímky XY a rovnoběžky s jeho
úhlopříčkou WY vedené bodem Z je hledaným středovým obrazem.]

D4. Máme pravítko bez měřítka, které nám umožňuje vést přímku dvěma danými body
a sestrojit kolmici na danou přímku jejím daným bodem. Zjistěte, zda pomocí těchto
operací dokážeme sestrojit kolmici na danou přímku z daného bodu ležícího mimo tuto
přímku. [KMS 2010/11, 2. zimná séria, úloha 7]
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4. Reálná čísla x, y splňují nerovnosti xy = x + y > 0. Jaké nejmenší hodnoty může
nabývat součet x+ y? (Patrik Bak)

Řešení (užitím AG-nerovnosti). Pokud by x nebo y bylo rovno nule, pak by obě
nerovnosti zjevně nemohly platit najednou. Stejně tak nemohou být obě čísla záporná,
protože potom bychom měli x + y < 0, a nemůže být jedno kladné a druhé záporné,
protože potom xy < 0. Obě čísla tedy musí být kladná.

Rozmysleme si, že pro každá dvě reálná čísla x, y platí nerovnost

(x+ y)2 = 4xy,

ekvivalentními úpravami ji totiž můžeme přepsat na

(x+ y)2 − 4xy = x2 + 2xy + y2 − 4xy = x2 − 2xy + y2 = (x− y)2 = 0,

což zřejmě platí pro libovolná reálná čísla x a y. Předpokládejme nyní, že kladná čísla x,
y splňují nerovnosti ze zadání. Pak platí

(x+ y)2 = 4xy = 4(x+ y),

což po vydělení kladným číslem x + y dává x + y = 4. Tato hodnota je dosažitelná pro
x = y = 2, takže hledaná nejmenší hodnota součtu x+ y je 4.

Poznámka. Nerovnost (x+ y)2 = 4xy, kterou jsme v řešení výše dokázali a využili,
je variantou tzv. AG-nerovnosti pro dvě čísla, viz návodná úloha N1. K tématu nerovností
je mnoho studijních textů, jedním z obsáhlejších je např. https://prase.cz/archive/
29/9.pdf.

Jiné řešení (elementární). Stejně jako v předchozím řešení zdůvodníme, že x i y
musí být kladná čísla. Pokud první zadaná nerovnost platí ostře, t.j. pokud

xy > x+ y, neboli xy

x+ y
= r > 1,

můžeme obě čísla vynásobit nějakým číslem t ∈ (0, 1) a dostat tak dvojici (tx, ty),
která splňuje zadanou podmínku (s rovností v první nerovnosti), ale má nižší součet
tx+ ty = t(x+ y). Vskutku, podmínka ze zadání pro tuto dvojici čísel se dá napsat jako

t2xy = t(x+ y) nebo ekvivalentně t
xy

x+ y
= tr = 1,

takže volba t = 1
r ∈ (0, 1) funguje a v zadané nerovnosti xy = x+y při ní opravdu nastává

rovnost. Stačí se tedy omezit na dvojice kladných čísel (x, y) splňujících xy = x+y. Z této
rovnosti vyjádříme y = x

x−1 (pokud x = 1, rovnost nabývá tvaru 1 · y = 1 + y, a tedy
nemůže nastat) a dosazením získáme x + y = x2

x−1 . Hledáme tedy minimum výrazu x2

x−1
pro všechna kladná čísla x taková, že i y = x

x−1 = 1+ 1
x−1 je kladné, tedy pro x z intervalu

(1,∞). Jinými slovy hledáme největší reálné číslo m splňující x2

x−1 = m pro všechna x > 1.
Nerovnost ekvivalentně přepíšeme jako x2−mx+m = 0 a její levou stranu upravíme na
čtverec*:

x2 −mx+m =
(
x− m

2

)2
− m2

4 +m = 0.

* Alternativou je použití diskriminantu podobně jako v následujícím řešení.
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Tato nerovnost platí pro všechna reálná x právě tehdy, když m−m2

4 = 0 (protože můžeme
zvolit x = m

2 ) neboli m 5 4. Číslo 4 je tedy minimální hodnotou výrazu x2

x−1 na R. Na
intervalu (1,∞) by minimální hodnota mohla být větší, ale dosazením x = 2 vidíme,
že tomu tak není, protože 22

2−1 = 4. Minimální hodnota výrazu x2

x−1 na intervalu (1,∞),
a tedy i součtu x+ y, je proto 4.

Poznámka. Právě dokončené řešení nevyužívá žádné pokročilejší znalosti nebo
„triku“ (snad až na závěrečnou úpravu na čtverec), ale je tomu tak za cenu poměrně
dlouhých a komplikovaných myšlenkových úvah. Zejména v části redukující úlohu na
případ x = y je snadné udělat chybu, resp. není snadné příslušné kroky korektně
zdůvodnit. Přesto bývá podobný přístup užitečný (když nás ten správný trik zkrátka
nenapadne). Podrobně je rozebrán v řešení úlohy [B–74–I–6] a příslušných návodných
úlohách (zejména N5 až N8).

Jiné řešení (pomocí kvadratické rovnice). Označme s = x + y a přeformulujme
úlohu následujícím způsobem: Pro které nejmenší reálné číslo s existují reálná čísla x, y
splňující

xy = x+ y = s > 0 ?
Ihned vidíme, že s musí být kladné. Vyjádřením a dosazením y = s − x dostáváme
podmínku

x(s− x) = s,

kterou dále upravíme na nerovnost pro kvadratický trojčlen

x2 − sx+ s 5 0

a ptáme se, pro jaké nejmenší s má tato nerovnice (v proměnné x) řešení. Kvadratický
trojčlen s kladným vedoucím koeficientem nabývá alespoň jedné nekladné hodnoty právě
když příslušná kvadratická rovnice má alespoň jeden reálný kořen, což je ekvivalentní
tomu, že její diskriminant

D = s2 − 4s = 0
je nezáporný. Zkrácením kladným číslem s dostáváme ihned s = 4. Minimální možná
hodnota součtu je tedy 4 a vzhledem k použitému řetězci ekvivalencí není nutná žádná
zkouška (pro s = 4 bychom ale ve shodě s ostatními řešeními dostali jedinou vyhovující
dvojici x = y = 2).

Jiné řešení. Podobně jako v návodné úloze N3 nechť pro reálná čísla c a d platí
c = (x + y)/2 a d = (x − y)/2. Potom x = c + d a y = c − d. Dále platí x + y = 2c a
xy = c2−d2. Úlohu můžeme nyní přeformulovat: Pro které nejmenší reálné číslo c existuje
reálné číslo d tak, že platí c2 − d2 = 2c > 0? Podle druhé nerovnosti platí c > 0. Jelikož
d2 je nezáporné číslo, z první nerovnosti nutně platí c2 = 2c. Proto c = 2. Čísla c = 2
a d = 0 zřejmě vyhovují přeformulované úloze, proto nejmenší možná hodnota součtu
x+ y jsou 2c = 4, to nastane pro x = y = 2.

Návodné a doplňující úlohy:
N1. Dokažte nerovnost mezi aritmetickým a geometrickým průměrem (tzv. AG-nerovnost)

nezáporných reálných čísel a, b
a+ b

2 =
√
ab
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a určete, kdy v ní nastává rovnost. [Díky nezápornosti existují čísla
√
a,
√
b a s jejich

pomocí můžeme nerovnost ekvivalentně přepsat jako (
√
a −
√
b)2 = 0. Tato nerovnost

zřejmě platí pro všechny dvojice a, b = 0 a rovnost v ní nastává právě když a = b.]
N2. Nechť a, b jsou kladná reálná čísla se součinem 10. Určete nejmenší možnou hodnotu

součtu a+ b a zjistěte, pro jaká a, b se nabývá. [Z AG-nerovnosti máme a+ b = 2
√
ab =

= 2
√

10 a rovnost se nabývá právě pro a = b =
√

10. Alternativně můžeme dosadit b = 10
a

a hledat minimum m výrazu

a+ b = a+ 10
a

= m.

Vynásobíme obě strany poslední nerovnosti a a získanou ekvivalentní (zde využíváme, že
a je kladné) nerovnost a2−am+10 = 0, buď upravíme na čtverec a postupujeme jako v 2.
řešení soutěžní úlohy nebo, podobně jako ve 3. řešení soutěžní úlohy, využijeme toho, že
diskriminant trojčlenu na levé straně (v proměnné a) musí být nekladný. Oběma způsoby
dostaneme m2 5 4 · 10 (a hledali jsme největší takové m, takže m = 2

√
10) i podmínku

pro nabývání minima a = m
2 =

√
10.]

N3. Nechť reálná čísla a, b a konstanta K splňují a+ b = K. V závislosti na K určete největší
možnou hodnotu součinu ab a zjistěte, pro jaká a, b se nabývá. [Ukážeme dvě řešení, první
založené na intuitivním pozorování, že čím jsou čísla a, b dále od sebe, tím menší je jejich
součin. Označme d = a− K

2 = K
2 − b. Pak

ab =
(
K

2 + d

) (
K

2 − d
)

= K2

4 − d
2 5

K2

4

a rovnost nastává pro d = 0, neboli pro a = b = K
2 . Podobným způsobem lze dokázat

i AG-nerovnost. Alternativně můžeme dosadit b = K − a a hledat maximum výrazu
ab = a(K − a) úpravou na čtverec (jako v 2. řešení soutěžní úlohy) nebo pomocí
kvadratické funkce, a to buď označením neznámého maxima a využitím diskriminantu
(jako v 3. řešení soutěžní úlohy), nebo si všimneme, že f(a) = a(K − a) = −a2 + Ka

je kvadratický trojčlen se záporným vedoucím koeficientem, takže ze symetrie paraboly
nabývá maxima mezi kořeny, tedy v hodnotě K+0

2 .*]
D1. Pro libovolná čísla a, b z intervalu 〈1,+∞) platí nerovnost

(a2 + 1)(b2 + 1)− (a− 1)2(b− 1)2 = 4.

Dokažte a zjistěte, kdy nastane rovnost. [59–C–II–2]
D2. Určete nejmenší hodnotu výrazu

V = x2 + 2
1 + 2x2 ,

kde x je libovolné reálné číslo. Pro která x výraz V této hodnoty nabývá? [64–B–II–2]
D3. Určete všechny dvojice (x, y) reálných čísel, které vyhovují nerovnici

(x+ y)
(

1
x

+ 1
y

)
=

(
x

y
+ y

x

)2
.

[63–B–I–2]
D4. Najděte nejmenší reálné číslo k takové, aby nerovnost k(a2 + b2) = (a + b)2 + ab platila

pro všechny dvojice kladných reálných čísel a, b. [70–B–II–1]

* Povšimněte si, že tvrzení úloh N1 a N2 jsou si velmi blízká, ovšem s tím podstatným rozdílem, že v N1
musíme předpokládat a, b,K > 0.
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5. V konvexním čtyřúhelníku ABCD platí |�ABC| = |�ADC| a |�BCD| = 3|�BAD|.
Body P a Q leží po řadě na úsečkách AB a AD tak, že APCQ je rovnoběžník. Nechť O
je střed kružnice opsané trojúhelníku CPQ. Dokažte, že AO ⊥ BD. (Patrik Bak)

Řešení. Označme |�BAD| = α, pak z druhé rovnosti ze zadání máme |�BCD| =
= 3α. Dopočítáním úhlů ve čtyřúhelníku ABCD získáme pomocí první zadané rovnosti
vztah

|�ABC| = |�ADC| = 360◦ − 3α− α
2 = 180◦ − 2α.

Z rovnoběžnosti PC ‖ AQ plyne |�BPC| = |�BAD| = α, trojúhelník BCP je
tedy rovnoramenný (se základnou PC). Analogicky dokážeme, že i trojúhelník DCQ
je rovnoramenný (se základnou QC).

A

B

C

D

P

Q

O

Nyní ukážeme, že O je průsečíkem výšek v trojúhelníku ABD. Osa úsečky CP
prochází vrcholem B rovnoramenného trojúhelníku BCP i středem O kružnice opsané
trojúhelníku CPQ. Přímka BO je tak kolmá k přímce PC a tedy i k s ní rovnoběžné
přímce AD. Analogicky ukážeme, že DO ⊥ AB, čili O je skutečně průsečíkem výšek
v trojúhelníku ABD, z čehož už dokazované tvrzení přímo plyne.

Poznámka. K rovnoramennosti trojúhelníků BCP a DCQ se lze dobrat i jiným způ-
sobem: Protože |�BPC| = α = |�CQD| a |�PBC| = |�ABC| = |�ADC| = |�QDC|,
jsou trojúhelníky PBC a QDC podobné podle věty uu. Tedy |�BCP | = |�DCQ|. Zá-
roveň součet těchto dvou (shodných) úhlů je 2α, protože |�BCD| − |�PCQ| = 3α− α.
Tedy |�BCP | = |�DCQ| = α a trojúhelníky BCP a DCQ jsou rovnoramenné.

Návodné a doplňující úlohy:
N1. Uvnitř trojúhelníku ABC je dán bod P tak, že platí |�ABP | = 30◦, |�PBC| = 40◦,
|�BCP | = 20◦ a |�PCA| = 30◦. Ukažte, že přímka AP je kolmá k přímce BC.
[Dopočítáním úhlů zjistíme, že přímky BP a CP jsou výšky, přímka AP tedy musí
být třetí výškou. Skutečně, pro průsečík Q přímky BP a strany AC platí |�BQC| =
= 180◦−(40◦+20◦+30◦) = 90◦, analogicky dopočítáme, že přímka PC je kolmá k přímce
AB.]

N2. V trojúhelníku ABC označme M , N a P po řadě středy stran BC, CA a AB. Dokažte,
že průsečík výšek trojúhelníku MNP je současně středem kružnice opsané trojúhelníku
ABC. [Osy stran trojúhelníku ABC splývají s výškami v trojúhelníku MNP .]

D1. Úhlopříčky lichoběžníku ABCD se protínají v bodě P a jejich osy se protínají v bodě
M . Předpokládejme, že M leží na základně AB. Dokažte, že přímka MP je osou úhlu
CMD. [Trojúhelník BMD je rovnoramenný se základnou BD, takže platí |�MDB| =
= |�MBD| = |�CDB|, přičemž poslední rovnost plyne z rovnoběžnosti základen
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lichoběžníku AB ‖ CD. Tedy DP je osou vnitřního úhlu u vrcholu C v trojúhelníku
CDM . Podobně ukážeme, že přímka CP je osou vnitřního úhlu u vrcholu C. Bod P

jakožto jejich průsečík je středem kružnice vepsané trojúhelníku CDM , a tedy přímka
MP je opravdu osou úhlu CMD.*]

D2. V rovnoběžníku ABCD platí, že osa úhlu ABC prochází středem L strany CD. Dokažte,
že AL ⊥ BL. [C–71–S–2]

D3. V trojúhelníku ABC narýsujeme osu vnitřního úhlu u vrcholu A a její průsečík se stranou
BC označíme D. Na straně AB najdeme takový bod M , že MD ‖ AC. Dokažte, že pak
úsečky AM a DM mají stejnou délku. [Přímka AD je osou úhlu u vrcholu A, takže
|CAD| = |MAD|. Kromě toho úhly CAD a MDA jsou střídavé, protože MD ‖ AC.
Trojúhelník AMD je tudíž rovnoramenný a |AM | = |DM |.]

D4. Nechť ABC je ostroúhlý trojúhelník s nejdelší stranou BC. Uvnitř stran AB a AC leží
po řadě body D a E tak, že |CD| = |CA| a |BE| = |BA|. Označme F takový bod, že
ABFC je rovnoběžník. Dokažte, že |FD| = |FE|. [B–71–I–2]

* Jedná se o mírně přeformulovanou úlohu z letošního domácího kola C–75–I–5.
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6. Hrací plán na obrázku vlevo se skládá z 61 pravidelných šestiúhelníků se stranou
délky 1.* Na každém jeho políčku může stát nejvýše jeden jezdec. Dva jezdci se ohrožují
právě tehdy, když stojí na políčkách se středy vzdálenými přesně 3 (políčka ohrožená
jezdcem jsou na obrázku vpravo vybarvená). Kolik nejvýše jezdců můžeme umístit na
tento plán tak, aby se žádní dva neohrožovali?

n

(Jozef Rajník)

Řešení. Když jezdci zaplníme druhý, pátý a osmý řádek plánu, umístíme tak celkem
6+9+6 = 21 neohrožujících se jezdců, viz obrázek 1 vlevo, vedle je znázorněn jiný možný
způsob rozmístění stejného počtu jezdců.
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Obr. 1

Nyní dokážeme, že na plán lze umístit nanejvýš 21 jezdců. Základním pozorováním je,
že existují trojice políček, jejichž středy tvoří rovnostranný trojúhelník se stranou délky 3
(vybarvená políčka na obrázku 2 a)). Na těchto třech políčkách může stát nejvýše jeden
jezdec. Proto v útvarech na obrázcích 2 b) a 2 c) mohou být v každém nejvýše tři jezdci,
a to na každé barvě nejvýše jeden.

a) b) c)

Obr. 2

Celý plán lze rozdělit na sedm útvarů typů 2 b) a 2 c) podle obrázku 3, čímž je počet
jezdců omezen na nejvýše 7 · 3 = 21, což jsme chtěli dokázat.

* Hrací plány najdete na https://www.matematickaolympiada.cz/media/3855053/hrplany_b6.pdf
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Obr. 3

Jiné řešení. Obarvíme plán třemi barvami podle obrázků 4 a 5. Toto obarvení má
tu vlastnost, že jezdec umístěný na libovolné políčko ohrožuje jen políčka stejné barvy,
čímž jsme si vlastně úlohu rozdělili na tři nezávislé úlohy. Fialová políčka, kterých je 21,
je možné rozdělit do sedmi trojic podle obrázku 4 tak, že nejvýše jedno z políček každé
trojice může obsahovat jezdce. Analogicky rozdělíme i 21 zelených políček (obarvení je
symetrické v tom smyslu, že zelená políčka přejdou na fialová rotací kolem středu plánu
o 60◦). Žlutá políčka, kterých je 19, rozdělíme podle obrázku 5 na 6 trojic a středové
políčko. Dostaneme tak odhad na nejvyšší možný počet jezdců 7 + 7 + (6 + 1) = 21
a zároveň návod na několik různých optimálních konstrukcí – např. jezdce umístíme na
vyznačená políčka.

n

n n

n

nn

n

n

n

n

n

n

n

n

Obr. 4 Obr. 5

Poznámka. Alternativní řešení výše poskytuje způsob, jak určit počet všech mož-
ných optimálních rozmístění jednadvaceti jezdců. Z každé trojice políček musí být ale-
spoň jedno obsazeno jezdcem a totéž platí pro středové žluté políčko. Výběrem jedné
ze dvou možností v jedné ze žlutých trojic je již zbytek rozmístění na žlutých políčkách
jednoznačně určen, máme tedy dvě možnosti. Na fialových políčkách je rozbor možností
složitější, různými způsoby se lze dostat k jejich celkovému počtu 117, stejně jako pro
zelená políčka. Celkem tedy máme 2 · 1172 = 27378 možných rozmístění.

Návodné a doplňující úlohy:
N1. Vyjádřete obecně vzdálenost středů dvou políček na stejném řádku hracího plánu a vy-

voďte z výsledku, že jsou to necelá (dokonce iracionální) čísla. [Jsou to sudé násobky délky
výšky v rovnostranném trojúhelníku o straně jedna, neboli čísla tvaru 2k

√
3

2 =
√

3k pro
k celé nezáporné. Připomeneme důkaz známého faktu (v řešeních MO je tedy možné jej
používat bez důkazu), že

√
3 je iracionální číslo: pokud by p

q =
√

3 pro nějaká přirozená
čísla p, q, tak umocněním dostaneme 3q2 = p2. Číslo p2 obsahuje jakožto druhá mocnina
ve svém prvočíselném rozkladu trojku v sudé (i nulové) mocnině, zatímco rozklad 3q2

obsahuje ze stejného důvodu lichý počet trojek. Rovnost těchto čísel tedy není možná.]
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N2. Jezdec stojí na středovém políčku hracího plánu. Na která políčka dokáže doskákat
konečným počtem skoků? Jak tomu bude v případě, že jezdec stojí v pravém horním
rohu? [Plán je možné obarvit několika málo barvami tak, že jezdec umístěný na políčka
jedné barvy se může opakovanými skoky na políčka, která aktuálně ohrožuje, dostat pouze
na políčka stejné barvy. Využijeme obarvení plánu z alternativního řešení soutěžní úlohy,
odkud víme, že jezdec nemůže skočit mezi políčky různých barev. Zároveň se můžeme
snadno přesvědčit, že z libovolného políčka jedné barvy lze doskákat na libovolné jiné
políčko této barvy. Ze středového políčka může tedy jezdec doskákat právě na všechna
žlutá políčka a z pravého horního rohu na všechna zelená políčka.]

N3. Dokažte, že na šachovnici 8 × 8 lze umístit nejvýše 16 králů tak, aby se navzájem
neohrožovali. [Šachovnici rozdělíme na 16 čtverců 2× 2, na každý z nich můžeme umístit
nejvýše jednoho krále, proto je králů nejvýše 16. Šestnáct králů už na šachovnici umístit
umíme, například na ta pole, jejichž obě souřadnice jsou liché.]

D1. Figurka střelce ohrožuje na šachovnici libovolné pole diagonály, na níž střelec stojí. Pokud
ovšem na některém poli diagonály stojí věž, střelec už pole za ní neohrožuje. Určete
největší možný počet střelců, které můžeme spolu se čtyřmi věžemi umístit na šachovnici
8× 8 tak, aby se střelci navzájem neohrožovali. [B–69–I–6]

D2. Jaký největší počet střelců lze umístit na bílá pole šachovnice 8× 8 tak, aby se navzájem
neohrožovali? [Sedm. Na šachovnici uvažujme diagonály rovnoběžné s bílou hlavní dia-
gonálou. Včetně jí je jich právě 7. Na každou můžeme umístit nejvýše jednoho střelce.
Protože každé bílé pole leží na některé z těchto diagonál, můžeme tak na šachovnici
umístit nejvýše 7 střelců. Vyhovující umístění 7 střelců můžeme vybrat například tak, že
budou v počtech 4 a 3 v krajních sloupcích šachovnice.]

D3. Na desce 7× 7 hrajeme hru lodě. Nachází se na ní jedna loď 2× 3. Můžeme se zeptat na
libovolné políčko desky, a pokud loď zasáhneme, hra končí. Pokud ne, ptáme se znovu.
Určete nejmenší počet otázek, které potřebujeme, abychom jistě loď zasáhli. [58–B–I–4]

D4. Na desce 5 × 5 hrajeme hru lodě. Ze čtyř polí desky je vytvořena jedna loď tvaru
L-tetromina. Můžeme se zeptat na libovolné pole desky a pokud loď zasáhneme, hra
končí. a) Navrhněte osm polí, na něž se stačí dotázat, abychom měli jistotu zásahu lodě.
b) Zdůvodněte, že sedm otázek obecně takovou jistotu nedává. [58–B–II–2]
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