
75. ročník Matematické olympiády (2025/2026)

Zadání úloh domácího kola

Kategorie A

1. Ostrov je rozdělený na několik království. Území každého království je V J

konvexní mnohoúhelník, který má právě jeden nejsevernější, nejjižnější,
nejvýchodnější a nejzápadnější bod. Každý král dostal 4 vlajky s pís-
meny S, J, V, Z, které umístil do těchto významných bodů svého krá-
lovství. (Například u trojmezí tří států na obrázku jsou takto zapíchnuté 2 vlajky.)
Uprostřed ostrova je krtinec, kde se stýká 7 království. Určete všechny možné počty
vlajek zapíchnutých do krtince. (Josef Tkadlec)

2. Nechť p, q jsou reálná čísla taková, že rovnici

|x2 − 1| = px+ q

s neznámou x vyhovují právě 4 navzájem různá reálná čísla.
a) Určete všechny možné hodnoty součtu těchto 4 čísel.
b) Dokažte, že součin těchto 4 čísel leží v intervalu (−3, 1). (Patrik Bak)

3. Jozef má hlavolam, který se skládá ze tří vodorovných tyčí a z n = 2
různě velkých kotoučů seřazených na první tyči podle velikosti, viz
obrázek. V jednom tahu Jozef vysune z libovolné tyče krajní kotouč
(zleva nebo zprava) a nasune jej na jinou tyč ze stejné strany.
Hlavolam je vyřešený, pokud se všechny kotouče nachází na druhé
tyči seřazené stejně jako na začátku. V závislosti na n určete nejmenší
možný počet tahů, který je potřeba na vyřešení hlavolamu. (Jozef Rajník)

4. Jsou dána nesoudělná přirozená čísla a a b taková, že i čísla a3 − 1 a b3 − 1 jsou
nesoudělná. Dokažte, že čísla a2 − b a b2 − a jsou rovněž nesoudělná. (Patrik Bak)

5. Uvnitř ostroúhlého trojúhelníku ABC je dán bod R. Na stranách AB a BC leží
po řadě body P a Q tak, že obvod trojúhelníku PQR je nejmenší možný. Podobně
na stranách BC a AC leží po řadě body S a T tak, že obvod trojúhelníku RST je
nejmenší možný. Přímky PQ a ST se protínají v bodě K. Dokažte, že pokud platí
|BAK| = |CAR|, pak trojúhelníky PQR a RST mají stejný obvod.

(Michal Pecho)

6. Na tabuli jsou napsána 4 přirozená čísla. Žirafa vykonává následující kroky: pokaždé
si vybere jedno z čísel na tabuli, smaže ho a místo něj napíše jeho druhou mocninu.
Může vždy žirafa po konečně mnoha krocích dosáhnout toho, aby rozdíl některých
dvou čísel na tabuli byl násobkem 97? (Josef Tkadlec)
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Do soutěže se přihlaste na osmo.matematickaolympiada.cz

Informace o soutěži včetně návodných úloh najdete na
matematickaolympiada.cz
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