
75. ročník Matematické olympiády (2025/2026)

Úlohy domácího kola kategorie A
1. Ostrov je rozdělený na několik království. Území každého království je V J

konvexní mnohoúhelník, který má právě jeden nejsevernější, nejjižnější,
nejvýchodnější a nejzápadnější bod. Každý král dostal 4 vlajky s písmeny
S, J, V, Z, které umístil do těchto významných bodů svého království.
(Například u trojmezí tří států na obrázku jsou takto zapíchnuté 2 vlajky.)
Ve vnitrozemí je krtinec, kde se stýká 7 království. Určete všechny možné počty vlajek
zapíchnutých do krtince. (Josef Tkadlec)

Řešení. Nejprve ukážeme, že do krtince je zapíchnuto 5 vlajek s písmeny V nebo Z.
Nakreslíme přímku procházející krtincem ze severu na jih (svisle) a nazveme ji poledník.
Žádná strana království neleží na poledníku, protože by neexistoval právě jeden jeho
nejzápadnější nebo právě jeden jeho nejvýchodnější bod. Sledujme úhly jednotlivých
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království s vrcholem v krtinci (tj. vnitřní úhly příslušných konvexních mnohoúhelníků
v tomto vrcholu). Protože žádná hranice nevede svisle, některý úhel obsahuje polopřímku
s počátkem v krtinci směřující na sever a některý úhel obsahuje polopřímku s počátkem
v krtinci směřující na jih. Jde o úhly dvou různých království, jelikož království jsou
konvexní. V těchto dvou královstvích nebude v krtinci vlajka V ani Z. Zbývající úhly leží
buď celé na západ od poledníku a tehdy je krtinec nejvýchodnějším bodem království,
nebo celé na východ od poledníku a tehdy je krtinec nejzápadnějším bodem. To znamená,
že do krtince je zapíchnuto 7 − 2 = 5 vlajek s písmeny V nebo Z. Podobně ukážeme, že
je tam 5 vlajek s písmeny S nebo J. Celkem je tedy do krtince zapíchnuto 10 vlajek.
Z obrázků výše je vidět, jak vlajky mohou být rozmístěny.

Návodné a doplňující úlohy:
Není-li uvedeno jinak, předpokládáme, že království má tvar konvexního mnohoúhelníku.

N1. Načrtněte konvexní mnohoúhelník, který a) má, b) nemá právě jeden nejvýchodnější bod.
[Konvexní mnohoúhelník má více nejvýchodnějších bodů právě tehdy, pokud některá jeho
strana je rovnoběžná s osou y a celý mnohoúhelník se nachází západně od ní.]

N2. Uvažujme v rovině body B a C tak, že bod C se nachází severozápadně od bodu B.
Najděte všechny polohy bodu A, pro které má trojúhelník s vrcholy A, B, C právě jeden
nejvýchodnější bod, a to bod B. [Vyhovují právě všechny body, které se nacházejí západně
od poledníku procházejícího bodem B a zároveň neleží na přímce BC. Pod poledníkem
myslíme přímku ze severu na jih.]
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N3. Načrtněte království, které má v jednom ze svých vrcholů 0, 1, 2, 3 nebo 4 vlajky,
nebo rozhodněte, že takové neexistuje. [Daný vrchol nemůže být současně nejjižnějším
a nejsevernějším bodem království. Podobně nemůže být současně nejvýchodnějším
a nejzápadnějším bodem království. Možné počty jsou tak jen 0, 1, 2 a snadno se ověří,
že všechny vyhovují.]

N4. Uvnitř ostrova (jako ze zadání soutěžní úlohy) je bodX, ve kterém se stýkají tři království
a jsou v něm zapíchnuty právě dvě vlajky. Jaké všechny kombinace písmen se na nich
mohou objevit? [SV, SZ, JV, JZ. Uvažujme poledník procházející bodem X. Ani jedna
strana ani jednoho království neleží na poledníku, protože by neexistoval právě jeden
nejzápadnější nebo nejvýchodnější bod. Také se nemůže stát, že všechny tři hranice budou
na jedné straně od poledníku, neboť by vzniklo nekonvexní království. Proto na jedné
straně od poledníku musí být jedna hranice a na druhé dvě hranice – na této straně
bude i vlajka V nebo Z. V bodě X tak musí být zapíchnuta právě jedna z vlajek V,
Z a analogicky i právě jedna z vlajek S, J. To nám dává 4 možnosti, jak jsme uvedli na
začátku.]

D1. Ukažte, že pokud bychom v soutěžní úloze uvažovali nekonvexní království, mohlo by
se stát, že v krtinci nebude zapíchnuta žádná vlajka. [Každé ze 7 království může být
nekonvexní mnohoúhelník tvaru spirály, který má jeden vrchol v krtinci a pak se obtáčí
kolem něj. Takto lze zajistit, že každý mnohoúhelník bude mít alespoň jeden svůj bod
severně, jižně, východně i západně od krtince. To znamená, že v krtinci nebude ani jedna
vlajka.]

D2. Uvnitř konvexního desetiúhelníku A1A2 . . . A10 je dán bod P , který neleží na žádné
úhlopříčce. Dokažte, že některé dvě z polopřímek A1P,A2P, . . . , A10P protínají stejnou
stranu desetiúhelníku. [Uvažujme hlavní úhlopříčku A1A6. Ta rozdělí desetiúhelník na dvě
části a bod P leží uvnitř jedné z nich. Bez újmy na obecnosti ať leží uvnitř šestiúhelníku
A1A6A7A8A9A10. Potom 6 polopřímek A1P,A2P, . . . , A6P vstoupí do šestiúhelníku přes
stranu A1A6 a opustí tento šestiúhelník přes zbývajících 5 stran, takže alespoň dvě
polopřímky opustí šestiúhelník přes stejnou stranu. Tyto strany jsou zároveň strany
původního desetiúhelníku, takže některé dvě polopřímky protnou stejnou stranu tohoto
desetiúhelníku.]
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2. Nechť p, q jsou reálná čísla taková, že rovnici

|x2 − 1| = px+ q

s neznámou x vyhovují právě 4 navzájem různá reálná čísla.

a) Určete všechny možné hodnoty součtu těchto 4 čísel.
b) Dokažte, že součin těchto 4 čísel leží v intervalu (−3, 1). (Patrik Bak)

Řešení. Rovnice ze zadání je pro |x| = 1 ekvivalentní rovnici

x2 − 1 = px+ q (1)

a pro |x| < 1 zase rovnici
−x2 + 1 = px+ q. (2)

Každá z těchto dílčích rovnic má nanejvýš 2 řešení. Protože podle zadání má původní
rovnice 4 řešení, musí mít každá z těchto rovnic nutně právě 2 řešení.

Rovnici (1) ekvivalentně upravíme na tvar

x2 − px− (q + 1) = 0,

takže podle Viètových vztahů mají její dva kořeny součet p.
Podobně rovnici (2) upravíme na

x2 + px+ (q − 1) = 0,

takže podle Viètových vztahů mají její dva kořeny součet −p. Proto je součet všech čtyř
kořenů 0. Ještě musíme ověřit,* že je vůbec možné součet 0 dosáhnout. To je skutečně
možné, například pro volbu p = 0, q = 1
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2
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2.
Abychom určili součin všech kořenů, opět použijeme Viètovy vztahy. Součin kořenů

první rovnice je −(q + 1) a v druhé rovnici je q − 1, proto je součin všech čtyř kořenů
−(q + 1)(q − 1) = 1− q2, takže potřebujeme odhadnout q.

Rovnice (2) má 2 kořeny splňující x2 < 1, každý z nich je z intervalu (−1, 1). Součin
těchto dvou kořenů je proto také z intervalu (−1, 1). Podle Viètových vztahů je přitom
roven q − 1, takže q ∈ (0, 2). Proto pro součin všech čtyř kořenů původní rovnice platí
1− q2 ∈ (−3, 1), což bylo třeba dokázat v části b).

Komentář. Řešení rovnice |x2 − 1| = px + q si můžeme představit graficky jako
průnik přímky y = px + q a grafu funkce y = |x2 − 1|. Tento graf vznikne z paraboly
y = x2 − 1 tak, že její část pod osou x (tedy pro x ∈ (−1, 1)) se překlopí osově souměrně
podle osy x.

Úlohu je také možné řešit bez Viètových vztahů tak, že si všechna řešení vyjádříme
parametricky pomocí p a q, a následně počítáme už jen s těmito vyjádřeními.

* Neověřením by se mohlo stát, že množina součtů všech 4 kořenů je prázdná
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Návodné a doplňující úlohy:
N1. Najděte všechna řešení rovnice |x2 − 1| = x + 1. [2, 0 a −1. Rozebereme dva případy.

Pokud x2 = 1, pak |x2 − 1| = x2 − 1 a řešíme rovnici x2 − x− 2 = 0, kterou lze upravit
do tvaru (x+1)(x− 2) = 0. Získáme tak dva kořeny −1 a 2, pro oba platí x2 = 1. Pokud
x2 < 1, pak |x2−1| = −x2 +1 a řešíme rovnici x2 +x = 0. Získáme další kořen 0, přičemž
pro tento kořen skutečně platí x2 < 1, a kořen −1, který nevyhovuje, protože v tomto
případě neplatí x2 < 1. Takže původní rovnice má řešení 2, 0 a −1. Díky ekvivalentním
úpravám zkouška není nutná.]

N2. Určete počet řešení rovnice |x − 2| = ax pro reálný parametr a. [Pokud x = 2, pak
|x− 2| = x− 2, takže řešíme rovnici x− 2 = ax, které pro a 6= 1 vyhovuje x = 2

1−a . Má
platit x = 2, což je splněno právě pro 0 5 a < 1. Pokud a = 1, rovnice x− 2 = ax nemá
řešení. Nyní vyřešíme případ x < 2, kdy |x− 2| = 2− x, takže řešíme rovnici 2− x = ax,
které pro a 6= −1 vyhovuje x = 2

a+1 . Má platit x < 2, což je splněno právě pro a < −1
nebo a > 0. Pokud a = −1, pak rovnice 2− x = ax nemá řešení. Rovnice ze zadání má 2
řešení pro a ∈ (0, 1), 0 řešení pro a ∈ [−1, 0) a 1 řešení pro zbývající hodnoty a.]

N3. Připomeňte si Viètovy vztahy: Uvažujme kvadratickou rovnici x2 +px+ q = 0 s reálnými
parametry p, q, která má dva různé reálné kořeny. Vyjádřete jejich součet a součin pomocí
koeficientů. [Pokud má rovnice dva kořeny x1 a x2, pak platí x2 + px+ q = (x− x1)(x−
− x2) = x2 − (x1 + x2)x + x1x2. Takže součet kořenů splňuje x1 + x2 = −p a součin
kořenů splňuje x1x2 = q.]

D1. Uvažujme dvě rovnice x2 +2px+2q2 = 4, x2−2qx+2p2 = 4 s reálnými parametry p a q.
Předpokládejme, že první má 2 různé reálné kořeny x1, x2, druhá dva různé reálné kořeny
x3, x4. Určete všechny možné hodnoty x2

1+x2
2+x2

3+x2
4. [Platí x2

1+x2
2 = (x1+x2)2−2x1x2.

Z Viètových vztahů x1 + x2 = −2p a x1x2 = 2q2 − 4. Potom x2
1 + x2

2 = 4p2 − 4q2 + 8.
Podobně dostaneme x2

3 + x2
4 = 4q2 − 4p2 + 8. Takže jediná možná hodnota součtu je

x2
1 + x2

2 + x2
3 + x2

4 = 16. Její dosažitelnost snadno ověříme pro p = q = 1.]
D2. Určete počet reálných kořenů rovnice x2 + 4 = a|x| v závislosti na reálném parametru a.

[B–71–II–2]
D3. Určete počet reálných kořenů rovnice x·|x+6A| = 36 v závislosti na reálném parametru A.

[B–71–I–4]
D4. Určete všechny hodnoty reálného parametru p tak, aby rovnice

2017·
∣∣∣1−∣∣1− |1− x|∣∣∣∣∣= 2016x+ p

měla právě tři řešení v oboru reálných čísel. [B–66–II–4]
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3. Jozef má hlavolam, který se skládá ze tří vodorovných tyčí a z n = 2
různě velkých kotoučů seřazených na první tyči podle velikosti, viz
obrázek. V jednom tahu Jozef vysune z libovolné tyče krajní kotouč
(zleva nebo zprava) a nasune jej na jinou tyč ze stejné strany.
Hlavolam je vyřešený, pokud se všechny kotouče nachází na druhé tyči
seřazené stejně jako na začátku. V závislosti na n určete nejmenší
možný počet tahů, který je potřeba na vyřešení hlavolamu. (Jozef Rajník)

Řešení. Nejprve ukážeme, že může existovat nejvýše jeden kotouč, který přesuneme
při řešení zleva právě jednou. Pro spor předpokládejme, že jsou takové kotouče dva,
označme je A a B, kde A je menší než B, tedy A je nalevo od B. Proto kotouč A musíme
přesunout dříve než B, čili A se bude po přesunutí nacházet napravo od B. Kotouče A
a B tak zůstanou v nesprávném pořadí, což je spor.

Analogicky může existovat nejvýše jeden kotouč, který přesuneme zprava právě
jednou. Dostáváme tak, že nejvýše dva kotouče mohou být přesunuty jen jednou, zbývající
musí být přesunuty alespoň dvakrát. Potřebujeme proto alespoň (n− 2) · 2 + 2 · 1 =
= 2n− 2 tahů.

Ukážeme, že 2n−2 tahů stačí. Nejdříve po řadě přesuneme n−2 nejmenších kotoučů
na třetí tyč z levé strany, takže na ní budou v opačném pořadí. Na první tyči zůstanou
dva největší kotouče. Potom přesuneme druhý největší kotouč na druhou tyč z levé strany
a největší kotouč z pravé strany. Oba největší kotouče tak budou na této tyči v původním
pořadí. Nakonec po řadě přesuneme n−2 nejmenších kotoučů ze třetí tyče na druhou tyč
z levé strany. Jelikož na třetí tyči bylo těchto n− 2 kotoučů v opačném pořadí vzhledem
k pořadí na začátku, po přesunech na druhou tyč budou tyto kotouče seřazeny jako na
začátku. Napravo od nich je druhý největší a potom největší kotouč. Kotouče jsou proto
seřazeny jako na začátku a celkově jsme potřebovali (n − 1) + 1 + 1 + (n − 1) = 2n − 2
tahů. Obrázek ilustruje tento postup pro n = 5.

Návodné a doplňující úlohy:
N1. Uvažujme obdélníkový hrací plán 4×2 a na něm 4 žetony očíslované 1, 2, 3, 4 a rozmístěné

jako na obrázku vlevo. V jednom tahu lze přesunout jeden žeton z jeho políčka na políčko
sousedící stranou. Nejméně kolika tahy lze z původního rozestavení získat rozestavení na
obrázku vpravo? Na jednom políčku se může nacházet i více než jeden žeton.

1 2 3 4
→

4 3 2 1

[Žeton 1 potřebujeme posunout o 3 políčka doprava, k čemuž jsou potřeba 3 tahy. Rovněž
na žeton 4 potřebujeme alespoň 3 tahy. Žetony 2 a 3 potřebujeme posunout o políčko
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vedle, tedy na každý z nich potřebujeme alespoň jeden tah. Dohromady tedy potřebujeme
alespoň 3 + 1 + 1 + 3 = 8 tahů. Tohoto počtu tahů lze zjevně dosáhnout.]

N2. Vyřešte předchozí úlohu za předpokladu, že na jednom políčku se najednou nemůže
nacházet více než jeden žeton. [Tahy rozdělíme na vodorovné (žeton přesouváme v rámci
řádku) a svislé (v rámci sloupce). Vodorovných tahů potřebujeme alespoň 8 na základě
úvah z předchozího úkolu. Pokud dva žetony neprovedou žádný svislý tah, tak jsou po
celou dobu ve spodním řádku, a tedy je neumíme vyměnit. Proto nejvýše jeden žeton
provede 0 svislých tahů. Každý ze zbývajících žetonů musí provést svislý tah, dokonce
alespoň dva, jelikož se musí vrátit do spodního řádku. Tedy dohromady musí žetony
provést alespoň 3 · 2 = 6 svislých tahů, což celkově dává alespoň 8 + 6 = 14 tahů. Za
14 tahů umíme hlavolam vyřešit následovně: Nejdříve žetony 2, 3, 4 přesuneme do horního
řádku (3 tahy). Potom přesuneme žeton 1 zcela doprava (3 tahy). Přesuneme žeton 2 dolů
a doprava (2 tahy). Žeton 3 přesuneme vlevo, dolů (2 tahy) a žeton 4 vlevo, vlevo, vlevo,
dolů (4 tahy).]

N3. Dokažte, že pro n = 3 nelze hlavolam ze soutěžního úlohy vyřešit na 3 tahy. [Každý
kotouč musíme přesunout alespoň jednou, čili při třech tazích musí být každý kotouč
přesunut právě jednou. Proto alespoň dva kotouče musí být vysunuty z první tyče ze
stejné strany. Jelikož je už potom nepřesouváme, tak je musíme nasunout na druhou tyč.
Potom ale nebudou na druhé tyči ve správném pořadí.]

D1. Vyřešte úlohu N2 obecně pro herní plán 2n× 2 a 2n žetonů ve spodním řádku, kde n je
kladné celé číslo. [A–72–I–3]

D2. Uvažujme stejný hlavolam jako v soutěžní úloze s dodatečnými omezeními: kotouče lze
vysouvat a nasouvat jen zleva a v každém okamžiku musí být kotouče na každé tyči
uspořádány vzestupně podle velikosti zleva doprava. Jedná se vlastně o hlavolam známý
pod názvem Hanojské věže. V závislosti na kladném celém čísle n určete nejmenší počet
tahů nutných k vyřešení tohoto hlavolamu. [2n − 1. Důkaz matematickou indukcí. Pro
n = 1 je třeba 1 = 21−1 přesun. Předpokládejme, že pro n kotoučů je nejmenší počet tahů
2n−1. Abychom mohli přesunout největší kotouč na druhou tyč, musí být jako jediný na
první tyči a zbývajících n kotoučů musí být na třetí tyči. K jejich přesunu potřebujeme
podle indukčního předpokladu 2n−1 tahů. Po přesunutí největšího kotouče na druhou tyč
musíme na druhou tyč přesunout ještě zbývajících n kotoučů, na což opět potřebujeme
alespoň 2n − 1 tahů. Celkově tak třeba alespoň (2n − 1) + 1 + (2n − 1) = 2n+1 − 1 tahů.
Konkrétní posloupnost tahů přímo vyplývá ze způsobu získání tohoto odhadu.]

D3. Uvažujme modifikaci Hanojských věží, kde je zakázáno přesouvat kotouče mezi první
a třetí tyčí. Kolik nejméně tahů potřebujeme k přesunu všech kotoučů na třetí tyč? [3n−1.
Naznačíme jen hlavní myšlenku důkazu indukcí. Pro přesun n+ 1 kotoučů potřebujeme
dvakrát přesunout největší kotouč. Největší kotouč musíme nejprve přesunout na druhou
tyč. Proto musíme zbylých n kotoučů přesunout na třetí tyč (3n − 1 tahů). Po přesunu
největšího kotouče musíme zbytek přesunout zpět na první tyč (opět 3n − 1 tahů),
abychom mohli největší kotouč přesunout na třetí tyč. Potom znovu přesuneme zbývající
kotouče na třetí tyč (3n− 1 tahů). Celkově dostáváme alespoň 3 · (3n− 1) + 2 = 3n+1− 1
tahů. Konstrukce opět vyplývá z popsaného postupu.]

D4. V kruhu je 100 zelených mimozemšťanů, každý z nich má 100 tabletů. V rámci jednoho
tahu libovolný mimozemšťan vezme několik svých tabletů a rozdělí je mezi ostatní
mimozemšťany (ne nutně rovnoměrně a ne nutně mezi všechny). Po jakém nejmenším
počtu tahů mohou mimozemšťané docílit, aby žádní dva z nich neměli stejný počet
tabletů? [KMS 2018/19, 2. letní kolo, úloha 3]

D5. Uvažujme šachovnici rozměrů 8× 8. Na každém z osmi políček v první řadě je bílá dáma
a na každém z osmi políček v osmé řadě je černá dáma. V jednom tahu můžeme pohnout
libovolnou dámou podle šachových pravidel (tedy vodorovně, svisle nebo diagonálně)
na volné políčko. Tyto tahy opakujeme tak, aby se barvy pohybujících se dam střídaly.
Určete nejmenší počet tahů, po kterém budou v první řadě všechny černé a v osmé řadě
všechny bílé dámy. [KMS 2018/19, 2. letní kolo, úloha 7]
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4. Jsou dána nesoudělná přirozená čísla a a b taková, že i čísla a3 − 1 a b3 − 1 jsou
nesoudělná. Dokažte, že čísla a2 − b a b2 − a jsou rovněž nesoudělná. (Patrik Bak)

Řešení. Sporem předpokládejme, že čísla a2− b a b2− a jsou soudělná, tedy existuje
prvočíslo p, které je obě dělí. Potom toto prvočíslo dělí i jejich rozdíl, tedy

(a2 − b)− (b2 − a) = (a− b)(a+ b) + a− b = (a− b)(a+ b+ 1).

Proto platí p | a− b* nebo p | a+ b+ 1.
(i) Pokud p | a − b, máme p | (a2 − b) − (a − b) = a2 − a = a(a − 1), takže p | a nebo

p | a − 1. Případ p | a však spolu s p | a − b dává p | b, což je spor s nesoudělností
a, b. Musí proto platit p | a − 1, tedy p | (a − 1)(a2 + a + 1) = a3 − 1. Analogicky
odvodíme i p | b3 − 1, což je spor s nesoudělností čísel a3 − 1 a b3 − 1 ze zadání.

(ii) Pokud p | a + b + 1, máme p | (a2 − b) + (a + b + 1) = a2 + a + 1, takže
p | (a − 1)(a2 + a + 1) = a3 − 1. Analogicky odvodíme p | b3 − 1, což je znovu
spor s nesoudělností čísel a3 − 1 a b3 − 1.
V obou případech jsme obdrželi spor se zadáním, a proto platí, že čísla a2− b a b2−a

jsou nesoudělná.

Jiné řešení. Sporem předpokládejme, že čísla a2 − b a b2 − a jsou soudělná.
Potom existuje prvočíslo p, pro které platí p | (a2 − b) i p | (b2 − a). Z toho plyne
a2 ≡ b (mod p)** a b2 ≡ a (mod p). Dosazením do druhé kongruence dostáváme
a4 = (a2)2 ≡ b2 ≡ a (mod p), tedy p | a4 − a = a (a3 − 1).

Pokud by platilo p | a, tak z b2 ≡ a ≡ 0 (mod p) dostáváme p | b2 a jelikož p je
prvočíslo, tak i p | b, což je ve sporu s nesoudělností čísel a a b. Proto musí platit p | a3−1.

Analogickým postupem dostaneme, že p | b3 − 1. Tím by však prvočíslo p dělilo obě
čísla a3−1 a b3−1, což je ve sporu se zadáním. Proto jsou čísla a2−b a b2−a nesoudělná.

Návodné a doplňující úlohy:
N1. Jsou dána přirozená čísla a, b. Dokažte, že pokud existuje prvočíslo p takové, že p | a+ 6

a p | b− 3, tak p | a+ 2b. [Pokud p | a+ 6 a p | b− 3, tak p | (a+ 6) + 2 · (b− 3) = a+ 2b.]
N2. Které z následujících dvojic čísel jsou nesoudělné pro všechny dvojice nesoudělných celých

čísel a, b? a) a, a+b, b) a+b, ab, c) a2 +b2, ab, d) a+b, a−b, e) a3, (a+1)5. [Nesoudělné
jsou dvojice a), b), c), e). a) Ukážeme to sporem. Nechť existuje společný dělitel d > 1
takový, že d | a a d | a+ b. Potom platí, že d dělí i rozdíl těchto čísel, tj. d | b, což je spor
s nesoudělností a a b. b) Opět postupujeme sporem. Nechť existuje prvočíslo p, které dělí
a + b i ab. Protože p je prvočíslo, musí platit p | a nebo p | b. Bez újmy na obecnosti
nechť p | a. Potom z p | a + b nutně plyne, že p | b, což je spor s nesoudělností čísel a
a b. c) Postupujeme podobně jako v části b) s využitím toho, že pokud p je prvočíslo,
tak z p | b2 vyplývá, že p | b. d) Čísla a + b a a − b jsou soudělná například pro a = 3,
b = 1, která jsou sama nesoudělná. e) Pro důkaz sporem nechť existuje prvočíslo p, které
dělí a3 i (a+ 1)5. Jelikož p je prvočíslo a p | a3, tak i p | a. Podobně z p | (a+ 1)5 plyne
p | a+ 1. Ale pak i p | a+ 1− a = 1, což je spor.]

* Relaci přirozené číslo A dělí přirozené číslo B zapisujeme A | B a čteme „A dělí B“ nebo „B je
dělitelné A“.
** Relaci dvě celá čísla A a B dávají stejný zbytek při dělení číslem C zapisujeme A ≡ B (mod C) a

čteme „A je kongruentní B modulo C“.
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D1. Dokažte, že pro každé celé číslo n je zlomek

21n+ 4
14n+ 3

v základním tvaru. (IMO 1959, úloha 1)[Pro spor předpokládejme, že existuje prvočíslo
p takové, že p | 21n+ 4 a současně p | 14n+ 3. Potom p | 3 · (14n+ 3)− 2 · (21n+ 4) = 1,
což je ve sporu s tím, že p je prvočíslo.]

D2. Nechť a, b, c, n jsou kladná celá čísla taková, že jsou splněny následující podmínky: a)
čísla a, b, c, a + b + c jsou po dvou nesoudělná; b) číslo (a+ b+ c)(a+ b)(b+ c)(c+ a)
(ab+ bc+ ca) je n-tou mocninou celého čísla. Dokažte, že součin abc lze zapsat jako rozdíl
dvou n-tých mocnin celých čísel. [A–68–III–3]
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5. Uvnitř ostroúhlého trojúhelníku ABC je dán bod R. Na stranách AB a BC leží po řadě
body P a Q tak, že obvod trojúhelníku PQR je nejmenší možný. Podobně na stranách
BC a AC leží po řadě body S a T tak, že obvod trojúhelníku RST je nejmenší možný.
Přímky PQ a ST se protínají v bodě K. Dokažte, že pokud platí |�BAK| = |�CAR|,
pak trojúhelníky PQR a RST mají stejný obvod. (Michal Pecho)

Řešení. Označme Ra a Rc body souměrně sdružené s R po řadě podle přímek BC
a AB. Nejprve se zaměříme na trojúhelník PQR. Nechť P leží na AB aQ naBC libovolně.
Ze souměrnosti platí |RcP | = |PR| a |RaQ| = |QR|. Proto je obvod trojúhelníku PQR
roven délce lomené čáry RcPQRa a bude nejmenší možný právě tehdy, když bude délka
této lomené čáry nejmenší možná. Z trojúhelníkové nerovnosti je délka lomené čáry
RcPQRa alespoň |RcRa|, proto bude nejkratší, právě když body P a Q budou průsečíky
úsečky RaRc po řadě se stranami AB a BC. Ještě musíme ověřit, že úsečka RaRc skutečně
protíná strany AB a AC.

A

B C

R

P

Q

Rc

Ra

Nejprve ukážeme, že úsečka RaRc protne polopřímky BA, BC. Platí
|�RaBRc| = |�RaBR|+ |�RBRc| = 2 · |�CBR|+ 2 · |�RBA| = 2 · |�CBA| < 180◦,

takže úhel RaBRc je konvexní a úsečka RaRc protíná obě polopřímky BA, BC.
Nyní zdůvodníme, že úsečka RaRc protne i polopřímky AB a CB. Z ostroúhlosti

trojúhelníku ABC máme |�BAC| < 90◦ a 2·|�BAC| < 180◦. To znamená, že obraz úhlu
BAC v osové souměrnosti podle přímky AB bude ležet v polorovině ACB. Jelikož R leží
uvnitř úhlu BAC, jeho obraz Rc v osové souměrnosti podle přímky AB leží v polorovině
ACB. Analogicky ukážeme, že Rc leží v polorovině ACB, a proto i úsečka RaRc leží
v polorovině ACB a protíná polopřímky AB a BC. To spolu s faktem, že úsečka RaRc
protíná i polopřímky BA a CB dává, že úsečka RaRc skutečně protíná strany AB a BC,
jak jsme chtěli dokázat.

Dále nechť Rb je bod souměrně sdružený s R podle přímky AC. Stejně jako výše
ukážeme, že S a T jsou průsečíky RaRb postupně se stranami BC a AC. Bod Ra leží na
přímkách PQ a ST , proto je totožný s bodem K ze zadání. Obvod trojúhelníku PQR je
tak roven |RcK| a obvod trojúhelníku RST je roven |RbK|.

Ukážeme, že platí |RcK| = |RbK|. Trojúhelníky ARcK a ARbK mají společnou
stranu AK a ze souměrností plyne |ARc| = |AR| = |ARb|. Také platí

|�KARb| = |�KAC|+ |�CARb| = |�KAC|+ |�CAR| =
= |�KAC|+ |�BAK| = |�BAC|

9
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A

B C

R

P

Q S

T

Rc

K = Ra

Rb

a zároveň

|�RcAK| = |�RcAB|+ |�BAK| = |�BAR|+ |�CAR| = |�BAC|,

takže |�RcAK| = |�BAC| = |�KARb|. Trojúhelníky ARcK a ARbK jsou tak shodné
podle věty sus. Proto jsou i délky úseček RcK a RbK stejné. Jelikož jsou tyto délky
postupně rovny obvodům trojúhelníků PQR a RST , rovnají se i tyto obvody.

Návodné a doplňující úlohy:
N1. V rovině je dána přímka ` a dva body A, B ležící ve stejné polorovině určené přímkou

`. Najděte bod X ležící na přímce `, pro který je hodnota |AX| + |XB| co nejmenší.
[Hledaný bod je průsečíkem přímek AB′ a `, kde B′ je bod osově souměrný s bodem B

podle přímky `. Nechť B′ je bod osově souměrný s bodem B podle přímky `. Potom pro
libovolný bod X přímky ` platí ze symetrie |XB| = |XB′|. Z trojúhelníkové nerovnosti
|AX|+ |XB| = |AX|+ |XB′| = |AB′|, přičemž rovnost nastává právě tehdy, když X leží
na AB′. Takže hledaný bod X je průsečíkem přímek AB′ a `.]

N2. Uvažujme obdélník ABCD. Označme M střed strany BC. Uvnitř trojúhelníku ABD je
dán bod G. a) Určete bod P strany AD, pro který je délka lomené čáry GPM minimální.
b) Určete body P strany AD a Q strany CD, pro které je délka lomené čáry GPQM

minimální. [a) Bod P je průsečíkem GM ′ s AD, kde M ′ je bod osově souměrný s M
podle přímky AD. Úloha se řeší podobně jako úloha N1. b) Nechť P ∈ AD a Q ∈ CD
jsou libovolné. Označme M ′, C ′ a Q′ body souměrně sdružené po řadě s M , C a Q podle
přímky AD. Ze symetrie platí |PQ′| = |PQ| a |Q′M ′| = |QM |. Dále nechť M ′′ je bod
souměrně sdružený s M ′ podle CD. Ze symetrie platí |Q′M ′| = |Q′M ′′|, protože Q′ leží

G

A

B C

D

M

P

Q′

M ′ M ′′

Q

C ′
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na CD. Délka lomené čáry GPQM je tak rovna délce lomené čáry GPQ′M ′′, která bude
minimální právě tehdy, když P a Q′ budou průsečíky přímky GM ′′ po řadě se stranami
AD a CD. Tím jsme sestrojili hledaný bod P a bod Q′. Hledaný bod Q je obrazem bodu
Q′ v osové souměrnosti podle přímky AD. Z polohy bodu G je patrné, že Q′ bude ležet
na úsečce C ′D a proto bod Q bude ležet na úsečce CD.]

N3. Uvnitř ostrého úhlu XOY je dán bod A. Najděte body M a N ležící po řadě na
polopřímkách OY a OX, pro které je obvod trojúhelníku AMN minimální. [Řešení bude
zveřejněno až po termínu odevzdání.]

D1. Je dán úhel XOY , jehož velikost je menší než 45◦, a bod A na polopřímce OX.
Najděte body M a N polopřímek po řadě OY , OX pro které je součet |AM | + |MN |
nejmenší. [Ať N leží na polopřímce OX libovolně. Dále ať OX ′ je polopřímka souměrně
sdružená s polopřímkou OX podle přímky OY a označme N ′ bod osově souměrný
s N podle přímky OY . Označme d vzdálenost bodu A od přímky OX ′. Pak platí
|AM | + |MN | = |AM | + |MN ′| = d, přičemž rovnost nastane právě tehdy, když N ′
bude kolmým průmětem bodu A do polopřímky OX ′ a bod M bude ležet na úsečce AN ′.
Jelikož |�XOY | < 45◦, platí |�XOX ′| = 2 · |�XOY | < 90◦, takže kolmý průmět bodu
A do přímky OX ′ leží na polopřímce OX ′. Hledaný bod M je proto průsečíkem úsečky
AN ′ s polopřímkou OY , kde N ′ je kolmý průmět bodu A do polopřímky OX ′ a hledaný
bod N je bod osově souměrný s bodem N ′ podle přímky OY .]

D2. Je dán konvexní úhel XOY a jeho vnitřní bod M . Najděte body A, B po řadě polopřímek
OX, OY , přičemž |OA| = |OB|, pro které je součet |MA| + |MB| nejmenší. [Ať α je
velikost úhlu XOY . Nechť M ′ je obrazem bodu M v otočení se středem v bodě O o úhel
α v kladném směru. Nechť A a B jsou body na polopřímkách OX a OY takové, že platí
|OA| = |OB|. Platí |�AOM | = α−|�MOB| = |�BOM ′|. Zároveň platí |OM | = |OM ′|.
Trojúhelníky AOM a BOM ′ jsou tak shodné podle věty sus, takže |AM | = |BM ′|. Tedy
|MA| + |MB| = |M ′B| + |BM | = |M ′M |, přičemž rovnost nastává právě tehdy, když
bod B leží na MM ′. Jelikož úhel MOM ′ je konvexní, úsečka MM ′ protíná polopřímku
OY , přičemž tento průsečík je hledaným bodem B. Hledaný bod A už snadno najdeme
jako bod na polopřímce OX takový, že |OA| = |OB|.]

D3. Je dán ostroúhlý trojúhelník ABC. Pro každý jeho vnitřní bod X označme Xa, Xb, Xc

jeho obrazy v osových souměrnostech postupně podle přímek BC, CA, AB. Dokažte, že
všechny trojúhelníky XaXbXc mají společný bod. [A–70–III–6]
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6. Na tabuli jsou napsána 4 přirozená čísla. Žirafa vykonává následující kroky: pokaždé
si vybere jedno z čísel na tabuli, smaže ho a místo něj napíše jeho druhou mocninu.
Může vždy žirafa po konečně mnoha krocích dosáhnout toho, aby rozdíl některých dvou
čísel na tabuli byl násobkem 97? (Josef Tkadlec)

Řešení. Budeme se dívat na zbytky po dělení 97 a všechny kongruence budeme
chápat modulo 97. (Definici kongruence naleznete mezi návodnými úlohami.)

Uvažujme libovolný zbytek a ∈ {0, 1, . . . , 96}. Postupným umocňováním čísla a
dostáváme posloupnost

a, a2, a4, a8, a16, a32, a64, a128, . . .

Jelikož 97 je prvočíslo, z malé Fermatovy věty máme a97 ≡ a. Platí (a32)2 ≡ a64 a také
(a64)2 ≡ a128 ≡ a97 · a31 ≡ a · a31 ≡ a32. Jelikož zbytek každého členu této posloupnosti
závisí jen na zbytku toho předchozího, od pátého umocnění dále se musí opakovat už jen
zbytky a32, a64. Uvažovaná posloupnost zbytků je tedy od pátého členu periodická s (ne
nutně nejkratší) periodou 2, ve které se periodicky střídají (ne nutně různé) zbytky a32

a a64.
Určíme všechny zbytky r, které se mohou objevit v této periodické části. Jelikož máme

periodu 2, tak musí platit (r2)2 ≡ r4 ≡ r, tedy 97 | r4−r = r(r3−1) = r(r−1)(r2+r+1).
Jelikož 97 je prvočíslo, musí být dělitelem jednoho z členů posledního součinu. Pokud
97 | r, pak r ≡ 0 ≡ r2, takže v posloupnosti se od nějakého členu bude vyskytovat pouze
zbytek 0. Podobně pokud 97 | r − 1, pak r ≡ 1 ≡ r2, takže i v tomto případě se bude
vyskytovat od nějakého členu pouze jeden zbytek, a to 1. Zároveň jsou to jediné dva
případy s periodou 1, protože z r2 ≡ r vyplývá 97 | r2 − r = r(r − 1), a tedy r dává
zbytek 0 nebo 1.

Nakonec rozebereme případ, kdy 97 | r2 + r+1. Ukážeme, že této podmínce vyhovují
právě dva různé zbytky. Zbytky r ≡ 0 a r ≡ 1 nevyhovují. Postupným umocňováním čísla
2 zjistíme, že vyhovují zbytky 232 ≡ 35 a 264 ≡ 352 ≡ 61. Pro spor předpokládejme, že
podmínka 97 | r2+r+1 je splněna pro tři různé zbytky r ∈ {2, 3, . . . , 96}, označme je x, y,
z. Potom 97 | x2+x+1 a 97 | y2+y+1, takže 97 | x2+x+1−y2−y−1 = (x−y)(x+y+1).
Protože zbytky x, y jsou různé, musí platit 97 | x+y+1. Analogicky pro x a z dostaneme
97 | x+ z + 1. Takže 97 | (x+ y + 1)− (x+ z + 1) = y − z, tedy y ≡ z, což je hledaný
spor.

Když budeme umocňovat na druhou jedno z čísel, tak počínaje pátým umocněním se
nám budou dále opakovat zbytky, a to jednou z těchto možností:

(i) dalším umocňováním dostaneme vždy zbytek 0.
(ii) dalším umocňováním dostaneme vždy zbytek 1.
(iii) dalším umocňováním se budou střídat v nějakém pořadí zbytky 35 a 61, což jsou

právě ty zbytky, které splňují 97 | r2 + r + 1.

A jelikož jsou na tabuli 4 čísla, pro dvě z nich musí nastat stejná možnost. Pokud se
zopakuje jedna z prvních dvou možností, tak odečtením dostaneme zbytek 0. Pokud se
zopakuje třetí možnost, pak umocníme příslušná čísla tak, aby obě dávala zbytek 35 a po
odečtení dostaneme zbytek 0. Takže vždy můžeme dosáhnout, že rozdíl některých dvou
čísel bude násobkem 97.
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Komentář 1. Konkrétní hodnoty zbytků 35 a 61 ve skutečnosti najít nepotřebujeme
– stačí ukázat, že existují nejvýše dva zbytky r splňující 97 | r2 + r + 1. Jelikož periodu
1 máme jen pro zbytky 0 a 1, které výše uvedené podmínce nevyhovují, v bodu (iii) jsou
posloupnosti, kde se střídají dvě různá čísla. Tato čísla, pokud vůbec existují, vyhovují
podmínce 97 | r2 + r + 1, proto musí být stejná nezávisle na počátečním čísle na tabuli.

Komentář 2. To, že existují nejvýše dva zbytky r splňující 97 | r2 +r+1, lze ukázat
i jinak. Například je možné to (pracně) ověřit pro všechny zbytky od 2 po 96, resp. ověřit
kongruenci r4 ≡ r. Jinou možností je odvolat se na fakt, že r2 + r + 1 je kvadratický
polynom, který má modulo prvočíslo 97 nejvýše dva kořeny. (Tyto kořeny lze také vyčíslit
explicitně pomocí diskriminantu 12−4·1·1 ≡ −3 ≡ 262 jako (−1±26)·2−1 ≡ (−1±26)·49,
což dává 35 a 61.)

Jiné řešení. Všimněme si, že 97 je prvočíslo. Pokud jsou alespoň dvě čísla na tabuli
násobkem 97, tak jejich rozdíl bude také dělitelný 97. Předpokládejme proto, že jsou na
tabuli napsána alespoň 3 čísla a, b, c, která nejsou dělitelná 97.

Jelikož 97 je liché prvočíslo, existuje primitivní prvek* r modulo 97, tedy číslo r
takové, že mezi čísly r1, r2, . . . , r96 se vyskytují všechny nenulové zbytky modulo 97. To
znamená, že existuje přirozené číslo α takové, že rα ≡ a. Po pěti umocněních dostaneme
a32 ≡ r32α. Z malé Fermatovy věty máme r96 ≡ r32·3 ≡ 1. Číslo α můžeme vyjádřit
pomocí nezáporných celých čísel m, n, kde n < 3, jako α = 3m + n. To znamená, že
zbytek a32 ≡ r32α ≡ r32·3m+32n ≡ (r32·3)m · r32n ≡ 1 · r32n je roven jednomu ze zbytků
r32·0, r32·1, r32·2. Podobně pro b a c najdeme exponenty β a γ takové, že platí rβ ≡ b
a rγ ≡ c. Analogicky dostaneme, že zbytky b32 ≡ r32β a c32 ≡ r32γ jsou rovny jednomu
ze zbytků r32·0, r32·1, r32·2.

Pokud dávají dvě z čísel a32, b32, c32 stejný zbytek, pak 97 dělí jejich rozdíl. Pokud
dávají všechna tři čísla různé zbytky, bez újmy na obecnosti ať platí b32 ≡ r32 a c32 ≡ r32·2.
Pak stačí b umocnit na druhou a rozdíl b64 − c32 bude násobkem 97.

Komentář. Vzhledem k tomu, že modulo 97 existuje jen konečně mnoho zbytků,
můžeme úlohu řešit i tak, že sledujeme, na jaký zbytek se každý zbytek zobrazí po
umocnění na druhou. Tento proces si můžeme představit jako orientovaný graf, kde má
každý vrchol právě jednu výstupní hranu. Pomocí toho lze ukázat, že z každého ze čtyř
čísel na tabuli se po jistém konečném počtu kroků stane jedno ze tří čísel: 0, 1 nebo 61.
(Zbytek 61 se zobrazí na zbytek 35 a zbytek 35 se zobrazí na zbytek 61.)

Návodné a doplňující úlohy:
Před řešením této úlohy vám doporučujeme seznámit se s kongruencemi. Zápis a ≡ b

(mod d) vyjadřuje, že celá čísla a, b dávají stejný zbytek po dělení kladným celým číslem
d. Čteme jej a je kongruentní s b modulo d. Pro hlubší seznámení s kongruencemi výborně
poslouží brožurka Aloise Apfelbecka Kongruence z edice Škola mladých matematiků.

N1. Vyzkoušejte si soutěžní úlohu pro menší čísla než 97, například pro 5 a 7. [Lze ukázat, že
pro číslo 7 tvrzení úlohy platí. Pro číslo 5 tvrzení také platí, a dokonce by platilo i kdyby
na tabuli byla napsána pouze 3 přirozená čísla.]

N2. Nechť p je prvočíslo a a celé číslo, které není dělitelné číslem p. Ukažte, že vezmeme-li
všechny nenulové zbytky 1, 2, . . . , p − 1 po dělení číslem p, vynásobíme je číslem a

a následně opět vezmeme zbytky po dělení číslem p, dostaneme stejnou množinu zbytků

* Pokud jste se s primitivními prvky ještě nesetkali, více informací naleznete například na Wikipedii.
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jako na začátku. [Ukážeme, že zobrazení, které přiřadí zbytku x ∈ {1, 2, . . . , p−1} zbytek
a ·x po dělení p, je prosté. Pokud platí a ·x ≡ a ·y (mod p), pak a(x−y) ≡ 0 (mod p).
Protože a není dělitelné číslem p, musí platit x− y ≡ 0 (mod p), tedy x ≡ y (mod p).
To znamená, že zobrazení, které přiřadí x ∈ {1, 2, . . . , p − 1} zbytek a · x po dělení p,
je prosté. A protože x i zbytek a · x po dělení p jsou prvky množiny {1, 2, . . . , p − 1},
násobení číslem a modulo p jen přeuspořádá tuto množinu.]

N3. Nechť p je prvočíslo a a celé číslo, které není dělitelné číslem p. Ukažte, že existuje právě
jeden zbytek b, pro který platí a · b ≡ 1 (mod p). (Takový prvek b se nazývá inverzní
prvek k a modulo p a označujeme jej a−1). [Využijeme úlohu N1 pro a. Jelikož násobením
všech nenulových zbytků číslem a dostaneme stejnou množinu zbytků, musí existovat b
takové, že a ·b ≡ 1 (mod p). Jak jsme ukázali v úloze N1, toto zobrazení je prosté, proto
je b jednoznačně určeno.]

N4. Dokažte malou Fermatovu větu: Nechť p je prvočíslo a a celé číslo, které není dělitelné
číslem p. Potom p dělí číslo ap−1 − 1. [Chceme ukázat, že platí 1 ≡ ap−1 (mod p).
S využitím úlohy N1 dostáváme, že platí 1 ·2 · . . . · (p−1) ≡ a ·2a · . . . · (p−1)a (mod p),
takže (p− 1)! ≡ ap−1(p− 1)!. Jelikož (p− 1)! není dělitelné p, tak 1 ≡ ap−1 (mod p).]

N5. Nechť p je prvočíslo a a, b, c jsou celá čísla, přičemž p nedělí a. Dokažte, že podmínka
p | ax2 + bx + c je splněna nejvýše pro dvě různé hodnoty x ∈ {0, 1, 2, . . . , p − 1}. [Pro
spor předpokládejme, že podmínka p | ax2 + bx + c je splněna pro tři různé hodnoty
x ∈ {0, 1, 2, 3, . . . , p − 1}, označme je y, z, w. Potom p | ay2 + by + c a p | az2 + bz + c,
takže p | ay2 + by+ c− (az2 + bz+ c) = a(y− z)(y+ z) + b(y− z) = (y− z)(ay+ az+ b).
Protože p nedělí y − z, musí platit p | ay + az + b. Analogicky pro y a w dostáváme, že
p | ay+ aw+ b. Takže p | ay+ az+ b− (ay+ aw+ b) = a(z−w). Ale p nedělí ani a a ani
z − w, což je hledaný spor.]

N6. Dokažte, že číslo 22025 − 8 je dělitelné 56. [Mocniny dvojky dávají při dělení 56 po řadě
zbytky 2, 4, 6, 16, 32, 8, 16, 32, 8, 16, 32, . . . Jelikož zbytek následující mocniny je
jednoznačně určen zbytkem předešlé mocniny, tak po zbytku 8 se bude opakovat už jen
trojice zbytků 8, 16, 32. Jelikož 2025 je dělitelné třemi a každá mocnina s exponentem
dělitelným třemi dává zbytek 8, tak 22025 − 8 ≡ 8− 8 ≡ 0 (mod 56).]

D1. Nechť p je liché prvočíslo. Číslo a ∈ {1, 2, . . . , p− 1} nazýváme kvadratický zbytek modulo
p, pokud existuje celé číslo x, pro které platí x2 ≡ a (mod p). Dokažte, že v množině
{1, 2, . . . , p− 1} je stejně mnoho kvadratických zbytků modulo p jako čísel, která nejsou
kvadratickým zbytkem modulo p. [Všimněme si, že x2 ≡ y2 platí právě tehdy, když
(x − y)(x + y) ≡ x2 − y2 ≡ 0, tedy právě tehdy, když platí x ≡ y nebo x ≡ −y. Z toho
vyplývá, že mezi 12, 22, . . . , (p − 1)2 se nám vyskytne každý kvadratický zbytek právě
dvakrát, jednou jako x2 a jednou jako (p − x)2, pro vhodné x, kde x < p − x. Proto
se stačí dívat jen na první polovinu, tedy na 12, 22, . . . , (p−1

2 )2, tyto zbytky jsou modulo
p navzájem různé, takže kvadratických zbytků je p−1

2 , což je právě polovina ze všech
nenulových zbytků.]

D2. Dokažte jednu část Wilsonovy věty: pokud p je prvočíslo, pak (p − 1)! ≡ −1 (mod p).
[Podle úlohy N2 existuje ke každému zbytku a inverzní prvek a−1, tedy zbytek takový,
že a · a−1 ≡ 1. Určíme, kdy platí a ≡ a−1. Vynásobením a dostáváme a2 ≡ 1, z toho
(a− 1)(a+ 1) ≡ 0, takže a ≡ 1 nebo a ≡ −1 ≡ p− 1, protože p je prvočíslo. To znamená,
že v množině zbytků {1, 2, . . . , p− 1} umíme všechna čísla až na 1 a p− 1 uspořádat do
dvojic, jejichž součin dává zbytek 1. Proto platí (p−1)! ≡ 1·2 · · · (p−1) ≡ 1·(p−1) ≡ −1.]

D3. Dokažte, že každá nekonečná posloupnost (a0, a1, a2, . . .) celých čísel taková, že platí
a0 = 1 a an+1 ∈ {2022an − 1, 2022an + 1} pro všechny indexy n, obsahuje nekonečně
mnoho složených čísel. [A–71–II–4]

D4. Uvažujme posloupnost a1, a2, . . . definovanou vztahem an = 2n + 3n + 6n − 1 pro
n = 1, 2, . . . Určete všechna kladná celá čísla, která jsou nesoudělná s každým členem
této posloupnosti. [IMO–2005–P4]
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